Bioengineers develop artificial chip for testing how drugs interact with ion channels

Apr 10, 2012

(Phys.org) -- Ion channels, proteins embedded in cell membranes, are central to many of the human body's physiological processes, including cardiac activity. For this reason, they are also important targets for cardiac drugs. But unanticipated interactions between drugs and ion channels can have catastrophic effects, potentially leading to cardiac arrhythmia and death.

While ion-channel drug discovery and safety screening is very important, the current technology used by the pharmaceutical industry for testing ion-channel drug interactions is slow, labor-intensive and expensive.

Now, bioengineering researchers from the UCLA Henry Samueli School of Engineering and Applied Science have developed a cell-free artificial membrane chip that tests drug potency with . The researchers designed the artificial chip to be simple to use, inexpensive and capable of being incorporated into automated processes on a large scale.

The simplicity and high-yield of this new platform, along with its compatibility with large-scale automation, show great promise for use in ion-channel and safety screening.

Explore further: Dead feeder cells support stem cell growth

More information: The research has been published online in the peer-reviewed journal Lab on a Chip (bit.ly/HsrXtn) and will be included in a forthcoming print issue of the journal.

Related Stories

Rhythm is it: Ion channels ensure the heart keeps time

Sep 09, 2011

The heartbeat is the result of rhythmic contractions of the heart muscle, which are in turn regulated by electrical signals called action potentials. Action potentials result from the controlled flow of ions into heart muscle ...

Recommended for you

Dead feeder cells support stem cell growth

Apr 24, 2015

Stem cells naturally cling to feeder cells as they grow in petri dishes. Scientists have thought for years that this attachment occurs because feeder cells serve as a support system, providing stems cells ...

Improving accuracy in genome editing

Apr 23, 2015

Imagine a day when scientists are able to alter the DNA of organisms in the lab in the search for answers to a host of questions. Or imagine a day when doctors treat genetic disorders by administering drugs ...

Drug research enhanced by fragment screening libraries

Apr 22, 2015

Generation of fragment screening libraries could enhance the analysis and application of natural products for medicinal chemistry and drug discovery, according to Griffith University's Professor Ronald Quinn.

Decoding the cell's genetic filing system

Apr 22, 2015

A fully extended strand of human DNA measures about five feet in length. Yet it occupies a space just one-tenth of a cell by wrapping itself around histones—spool-like proteins—to form a dense hub of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.