Bioengineers develop artificial chip for testing how drugs interact with ion channels

April 10, 2012

(Phys.org) -- Ion channels, proteins embedded in cell membranes, are central to many of the human body's physiological processes, including cardiac activity. For this reason, they are also important targets for cardiac drugs. But unanticipated interactions between drugs and ion channels can have catastrophic effects, potentially leading to cardiac arrhythmia and death.

While ion-channel drug discovery and safety screening is very important, the current technology used by the pharmaceutical industry for testing ion-channel drug interactions is slow, labor-intensive and expensive.

Now, bioengineering researchers from the UCLA Henry Samueli School of Engineering and Applied Science have developed a cell-free artificial membrane chip that tests drug potency with . The researchers designed the artificial chip to be simple to use, inexpensive and capable of being incorporated into automated processes on a large scale.

The simplicity and high-yield of this new platform, along with its compatibility with large-scale automation, show great promise for use in ion-channel and safety screening.

Explore further: Bioelectronics: Progress toward drug screening with a cell–transistor biosensor

More information: The research has been published online in the peer-reviewed journal Lab on a Chip (bit.ly/HsrXtn) and will be included in a forthcoming print issue of the journal.

Related Stories

Rhythm is it: Ion channels ensure the heart keeps time

September 9, 2011

The heartbeat is the result of rhythmic contractions of the heart muscle, which are in turn regulated by electrical signals called action potentials. Action potentials result from the controlled flow of ions into heart muscle ...

Recommended for you

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

Isolation of Fe(IV) decamethylferrocene salts

August 29, 2016

(Phys.org)—Ferrocene is the model compound that students often learn when they are introduced to organometallic chemistry. It has an iron center that is coordinated to the π electrons in two cyclopentadienyl rings. (C5H5- ...

Bringing artificial enzymes closer to nature

August 29, 2016

Scientists at the University of Basel, ETH Zurich, and NCCR Molecular Systems Engineering have developed an artificial metalloenzyme that catalyses a reaction inside of cells without equivalent in nature. This could be a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.