Bicyclic peptides with optimized ring size inhibit human plasma kallikrein and its orthologs while sparing paralogous pr

Apr 13, 2012
Bicyclic peptides with optimized ring size inhibit human plasma kallikrein and its orthologs while sparing paralogous proteases

(Phys.org) -- New drug candidates require testing in animal models prior to approval for clinical use. A recently developed antagonist based on a bicyclic peptide inhibited the human serine protease plasma kallikrein potently and selectively. However, the inhibitor was ‘too’ selective, not inhibiting murine plasma kallikrein which prevented its testing in animal models. Researchers led by Christian Heinis have developed bicyclic peptides that inhibit both human and murine plasma kallikrein, but not any paralogous proteases; their work is reported in ChemMedChem.

"We compared structural models of target (and related non-target) proteases to identify conserved regions in the vicinity of the active site, and modulated the loop size of our libraries of peptide macrocycles accordingly," says Heinis on behalf of his team at the Swiss Federal Institute of Technology in Lausanne and colleagues John Tite (Bicyclic Therapeutics) and Greg Winter (Laboratory of Molecular Biology; both Cambridge, UK). "From these libraries, we were able to isolate potent bicyclic peptide inhibitors of human, rat and monkey plasma kallikrein that do not inhibit related human serum proteases."

Based on structural considerations, the authors hypothesize that the length of the peptide loops may influence specificity. By modulating the loop size of the peptide macrocycles, they succeeded in selecting potent human plasma kallikrein inhibitors with the desired specificity profile. Heinis states further that "...the bicyclic combine key qualities of antibody therapeutics (high affinity and specificity) and advantages of small-molecule drugs and may offer an attractive format for the development of therapeutics." The authors conclude that this strategy will likely facilitate the use of peptide macrocycles in animal models, while avoiding unwanted off-target activities in the clinic.

Explore further: Researchers use neutron scattering and supercomputing to study shape of a protein involved in cancer

More information: Christian Heinis, Bicyclic Peptides with Optimized Ring Size Inhibit Human Plasma Kallikrein and its Orthologues While Sparing Paralogous Proteases, ChemMedChem, dx.doi.org/10.1002/cmdc.201200071

add to favorites email to friend print save as pdf

Related Stories

Active compounds against Alzheimer's disease

Jan 12, 2012

More than half of all cases of dementia in the elderly can be attributed to Alzheimer's disease. Despite vast research efforts, an effective therapy has not been developed, and treatment consists of dealing with the symptoms. ...

Understanding the APJ Receptor Binding Site

Jun 01, 2010

(PhysOrg.com) -- Apelin is a recently discovered peptide that binds to the apelin (or APJ) G-protein-coupled receptor. Apelin-13 (NH2-QRPRLSHKGPMPF-COOH), one of several cleavage products of the proprotein ...

Recommended for you

SANS: a unique technique to look inside plants' leaves

10 hours ago

Plants' leaves capture the sunlight and convert it into the energy used to produce nutrients for their activities. This process is accomplished thanks to the presence of the thylakoid membrane system. While ...

Silver shines as antibacterial for medical implants

Mar 24, 2015

There have been growing concerns in the global health care system about the eradication of pathogens in hospitals and other patient-care environments. Overuse of antibiotics and antimicrobial agents has contributed ...

Fat turns from diabetes foe to potential treatment

Mar 24, 2015

A new weapon in the war against type 2 diabetes is coming in an unexpected form: fat. Researchers have discovered a new class of potentially therapeutic lipids, called fatty-acid esters of hydroxy fatty acids (FAHFAs). These ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.