Astronomers identify three extrasolar planets

Apr 26, 2012 By Anne Ju

( -- It's not little green men, but it could be a step in that direction: Cornell astronomers, using data from the NASA Kepler Mission, have identified three Earthlike planets orbiting their own suns, all of which could be hospitable to life.

The team of astronomers used the Cornell-built Near-Infrared Triple Spectrograph (TripleSpec) at California's Mount Palomar Observatory to measure the temperatures and metallicities of small called M dwarfs, first recorded by the Kepler mission, which then led to observations of orbiting these stars. Kepler launched in 2009 to search for , which are called extrasolar planets or exoplanets. The team that built TripleSpec, completed in 2008, was led by Terry Herter, Cornell professor of astronomy.

The findings were published online April 23 in (Vol. 750, No. 2). The discovery could lead to better studies of these planets and pave the way toward discovering planets just like Earth.

The three planets orbit within their host stars' "habitable zones" -- the orbital distance in which could exist, and the sweet spot for determining whether life could be possible. The host stars -- KOI (Kepler Object of Interest) 463.01, KOI 812.03 and KOI 854.01 -- are located in areas of the sky between the constellations Cygnus and Lyra, in the range of a few hundred to a few thousand light years away.

"There is a fairly solid argument that the vast majority of planets in the universe, and quite possibly the Earthlike planets, are planets orbiting M dwarfs," said Jamie Lloyd, associate professor of astronomy and mechanical and aerospace engineering, and paper co-author.

The Kepler mission continuously monitors 150,000 stars for transit signals -- a dip in the star's brightness due to the passing of a planet. The Cornell team narrowed the list to 80 stars with these signals, focusing on stars called M dwarfs. These are smaller, dimmer stars than our sun, but the majority of the stars in the universe are M dwarfs, the researchers said.

"These stars are super faint in the visible wavelengths, neglected for years" because they are notoriously hard to characterize, said paper co-author Bárbara Rojas-Ayala, Ph.D. '12, now a researcher at the American Museum of Natural History.

While at Cornell, Rojas-Ayala developed a technique using TripleSpec to measure metallicities and temperatures of M dwarf stars. The Cornell team used this technique to identify the same parameters for the 80 M-dwarf stars. Using data from TripleSpec combined with theoretical models of how these types of stars probably evolved over time, they obtained the sizes of these 80 stars.

TripleSpec gave the researchers more accurate measurements of the stars' characteristics than originally obtained by the Kepler mission. And around these stars, they identified three Earthlike planet candidates based on their relative size, mass and temperature compared with Earth, the likelihood of having a rocky surface and their presence in their stars' habitable zone.

"Seventy percent of the stars in the universe are these small stars, not like our sun," said Philip Muirhead, Ph.D. '11, now a researcher at California Institute of Technology. "So if these planets are common around small stars, and small stars are common in the universe, then most life in the universe may in fact exist around these types of planets, and not around Earthlike systems and sunlike stars."

Astronomers call planets "candidates" until follow-up studies confirm them as planets; the Cornell researchers hope their work will inspire other scientists to point their telescopes in the direction of these new planet candidates. For example, said Muirhead, astronomers might study these planets' atmospheres using space telescopes like Hubble or the James Webb Space Telescope, and look for biosignatures, like oxygen absorption lines.

"If we saw signatures of oxygen in these planets' atmospheres, that would be a major step toward identifying extraterrestrial life in the universe," Muirhead said.

Explore further: Astronomers solve decades-long mystery of the 'lonely old stars'

Related Stories

NASA Releases Kepler Data on Potential Extrasolar Planets

Jun 16, 2010

( -- NASA's Kepler Mission has released 43 days of science data on more than 156,000 stars. These stars are being monitored for subtle brightness changes as part of an ongoing search for Earth-like ...

Kepler Set to Launch Tonight on Planet Finding Mission

Mar 06, 2009

( -- The Kepler spacecraft and its Delta II rocket are "go" for a launch tonight that is expected to light up the sky along Florida's Space Coast at 10:49 p.m. EST as the rocket lifts off from ...

Recommended for you

Dusty substructure in a galaxy far far away

13 hours ago

Scientists at the Max Planck Institute for Astrophysics (MPA) have combined high-resolution images from the ALMA telescopes with a new scheme for undoing the distorting effects of a powerful gravitational ...

ALMA disentangles complex birth of giant stars

13 hours ago

A research group led by Aya Higuchi, a researcher at Ibaraki University, conducted observations of the massive-star forming region IRAS 16547-4247 with the Atacama Large Millimeter/submillimeter Array (ALMA). ...

Image: The tumultuous heart of the Large Magellanic Cloud

Mar 31, 2015

A scene of jagged fiery peaks, turbulent magma-like clouds and fiercely hot bursts of bright light. Although this may be reminiscent of a raging fire or the heart of a volcano, it actually shows a cold cosmic ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 27, 2012
Planets orbiting M dwarfs in the zone where it is neither too warm or too cool will be subjected to much stronger solar tidal effects than the Earth, since tidal effects increase quickly with proximity to the sun, and M dwarfs are very faint so warm planets need to be close in.
This causes tidal locking, with the risk that the atmosphere will condense and frreze out on the permanent night side. No atmosphere, no life.

The important thing is that this discovery proves smaller planets are common. Finding such planerts around sun-type stars is currently not possible, since the method favors small stars.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.