A new approach to molecular plant breeding

April 18, 2012 By Dennis O'Brien
A new approach to molecular plant breeding
An ARS scientist has demonstrated a better way to speed up breeding of improved crop varieties through a statistical approach known as Genomic Selection, which makes use of more of the data produced by the growing number of studies focused on DNA sequences in plant genomes. Credit: Doug Wilson

(Phys.org) -- A U.S. Department of Agriculture (USDA) scientist has shown researchers and plant breeders a better way to handle the massive amounts of data being generated by plant molecular studies, using an approach that should help speed up development of improved crop varieties.

Jean-Luc Jannink, who is with the Agricultural Research Service (ARS) Plant, Soil and Nutrition Research Unit at the agency's Robert W. Holley Center for Agriculture and Health, in Ithaca, N.Y., has demonstrated that by using a known as Genomic Selection (GS), scientists can capture and exploit more of the data produced by the growing number of studies focused on found in plant genomes. GS is currently used in cattle breeding.

ARS is the principal intramural scientific research agency in USDA. This research supports the USDA priorities of improving agricultural sustainability and promoting international food security.

Scientists and plant breeders increasingly use molecular tools to develop improved . By identifying genes associated with desirable traits, they don't have to wait to observe crops grown from seeds.

But require analyzing massive amounts of data, and important traits like and yield are the result of the combined actions of multiple genes, each with a small effect. These genes are called quantitative trait loci (QTLs), and the conventional Marker-Assisted Selection (MAS) approach to handling molecular data has limited power to detect small-effect QTLs and estimate their effects.

Jannink's recommended GS approach exploits more data by including all of the small-effect QTLs and estimating the effects of all of the known genetic markers in a .

Jannink and his colleagues recently constructed statistical models, using both GS and MAS approaches, and compared how well they could predict values associated with 13 agronomic traits in crosses made from a "training population" assembled for the study. They gauged the model's accuracy by comparing their predictions with field observations of 374 lines of wheat.

The results showed the GS approach was more accurate at predicting trait values. Jannink had similar success in a study using oats. Both studies were published in The Plant Genome. The work is expected to speed up molecular breeding efforts and should prove extremely useful, given the pace of advances in DNA technology.

Explore further: Scientists devise efficient way of learning about complex corn traits

More information: Read more about this research in the April 2012 issue of Agricultural Research magazine.

Related Stories

New genetic tool helps improve rice

August 19, 2010

U.S. Department of Agriculture (USDA) scientists have developed a new tool for improving the expression of desirable genes in rice in parts of the plant where the results will do the most good.

Examining rice genes for rice blast resistance

October 17, 2011

U.S. Department of Agriculture (USDA) scientists have characterized the molecular mechanism behind some plants' ability to resist rice blast, a fungal disease that affects cereal grain crops such as rice, wheat, rye and barley ...

Recommended for you

Protein disrupts infectious biofilms

December 8, 2016

Many infectious pathogens are difficult to treat because they develop into biofilms, layers of metabolically active but slowly growing bacteria embedded in a protective layer of slime, which are inherently more resistant ...

An anti-CRISPR for gene editing

December 8, 2016

Researchers have discovered a way to program cells to inhibit CRISPR-Cas9 activity. "Anti-CRISPR" proteins had previously been isolated from viruses that infect bacteria, but now University of Toronto and University of Massachusetts ...

The song of silence

December 8, 2016

Like humans learning to speak, juvenile birds learn to sing by mimicking vocalizations of adults of the same species during development. Juvenile birds preferentially learn the song of their own species, even in noisy environments ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.