Transverse instability of megaripples

Mar 20, 2012

Aeolian ripples, which form regular patterns on sand beaches and desert floors, indicate the fundamental instability of flat sand surfaces under the wind-induced transport of sand grains.

Two kinds of sand ripples exist: normal, small ripples and megaripples with wavelengths reaching up to several meters. They differ also in their grain-size distributions (unimodal for sand ripples and bimodal for megaripples).

While sand ripples form almost straight lines, megaripples have greater sinuosity due to their transverse instability, a property that causes small megaripple undulations to grow with time.

The origin of the instability is due to variations in megaripple height, which do not diminish over time, as well as to the inverse dependence of ripple drift velocity on height. Thus, the taller regions of ripples will move more slowly than the adjacent, shorter portions, an outcome that promotes further perturbation growth.

Hezi Yizhaq of Ben-Gurion University of the Negev and colleagues provide an example, based on field work, of the transverse instability of megaripples. The instability growth rate depends on the difference between the heights of the different segments of the megaripple.

Their results suggest a for the transverse instability of megaripples and new insight into the spatial patterns of .

Explore further: Rocky platforms dissipating wave energy – a new option for coastal defence?

More information: Hezi Yizhaq et al., Geology, Posted online 19 Mar. 2012; doi: 10.1130/G32995.1

Journal reference: Geology search and more info website

Provided by Geological Society of America

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Scientists explore the physics of bumpy roads

Jul 07, 2009

sand or gravel or snow -- develops ripples that make driving a very shaky experience. A team of physicists from Canada, France and the United Kingdom have recreated this "washboard" phenomenon in the lab with ...

Mars Dunes: On the Move?

Mar 04, 2010

(PhysOrg.com) -- New studies of ripples and dunes shaped by the winds on Mars testify to variability on that planet, identifying at least one place where ripples are actively migrating and another where the ...

First images of flowing nano ripples

Mar 21, 2006

Delft University of Technology (Holland) researchers have shed new light on the formation of nanoscale surface features, such as nano ripples. These features are important because they could be useful as templates ...

Image: Blue on Mars

Feb 17, 2011

This image shows part of the floor of Rabe Crater, a large impact crater in Mars' southern highlands.

Recommended for you

Better forecasts for sea ice under climate change

9 hours ago

University of Adelaide-led research will help pinpoint the impact of waves on sea ice, which is vulnerable to climate change, particularly in the Arctic where it is rapidly retreating.

"Ferrari of space' yields best map of ocean currents

17 hours ago

A satellite dubbed the "Ferrari of space" has yielded the most accurate model of ocean circulation yet, boosting understanding of the seas and a key impact of global warming, scientists said Tuesday.

Researcher studies deformation of tectonic plates

20 hours ago

Sean Bemis put his hands together side by side to demonstrate two plates of the earth's crust with a smooth boundary running between them. But that boundary is not always smooth and those plates do not always ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.