Transverse instability of megaripples

Mar 20, 2012

Aeolian ripples, which form regular patterns on sand beaches and desert floors, indicate the fundamental instability of flat sand surfaces under the wind-induced transport of sand grains.

Two kinds of sand ripples exist: normal, small ripples and megaripples with wavelengths reaching up to several meters. They differ also in their grain-size distributions (unimodal for sand ripples and bimodal for megaripples).

While sand ripples form almost straight lines, megaripples have greater sinuosity due to their transverse instability, a property that causes small megaripple undulations to grow with time.

The origin of the instability is due to variations in megaripple height, which do not diminish over time, as well as to the inverse dependence of ripple drift velocity on height. Thus, the taller regions of ripples will move more slowly than the adjacent, shorter portions, an outcome that promotes further perturbation growth.

Hezi Yizhaq of Ben-Gurion University of the Negev and colleagues provide an example, based on field work, of the transverse instability of megaripples. The instability growth rate depends on the difference between the heights of the different segments of the megaripple.

Their results suggest a for the transverse instability of megaripples and new insight into the spatial patterns of .

Explore further: Sea-level surge at Antarctica linked to icesheet loss

More information: Hezi Yizhaq et al., Geology, Posted online 19 Mar. 2012; doi: 10.1130/G32995.1

Journal reference: Geology search and more info website

Provided by Geological Society of America

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Scientists explore the physics of bumpy roads

Jul 07, 2009

sand or gravel or snow -- develops ripples that make driving a very shaky experience. A team of physicists from Canada, France and the United Kingdom have recreated this "washboard" phenomenon in the lab with ...

Mars Dunes: On the Move?

Mar 04, 2010

(PhysOrg.com) -- New studies of ripples and dunes shaped by the winds on Mars testify to variability on that planet, identifying at least one place where ripples are actively migrating and another where the ...

First images of flowing nano ripples

Mar 21, 2006

Delft University of Technology (Holland) researchers have shed new light on the formation of nanoscale surface features, such as nano ripples. These features are important because they could be useful as templates ...

Image: Blue on Mars

Feb 17, 2011

This image shows part of the floor of Rabe Crater, a large impact crater in Mars' southern highlands.

Recommended for you

Aging Africa

Aug 29, 2014

In the September issue of GSA Today, Paul Bierman of the University of Vermont–Burlington and colleagues present a cosmogenic view of erosion, relief generation, and the age of faulting in southernmost Africa ...

NASA animation shows Hurricane Marie winding down

Aug 29, 2014

NOAA's GOES-West satellite keeps a continuous eye on the Eastern Pacific and has been covering Hurricane Marie since birth. NASA's GOES Project uses NOAA data and creates animations and did so to show the end of Hurricane ...

EU project sails off to study Arctic sea ice

Aug 29, 2014

A one-of-a-kind scientific expedition is currently heading to the Arctic, aboard the South Korean icebreaker Araon. This joint initiative of the US and Korea will measure atmospheric, sea ice and ocean properties with technology ...

User comments : 0