Transient fluvial incision and active surface uplift in the Woodlark Rift of Eastern Papua New Guinea

Mar 28, 2012

The Woodlark Rift off-shore of eastern Papua New Guinea is the fastest extending continental crust on Earth.

In the center of the rift, the D'Entrecasteaux Islands exceed elevations of 2,500 meters and include the youngest ultrahigh-pressure rocks on Earth, which were transported from more than 90 km deep since rifting began about eight million years ago.

Even though the Woodlark Rift presents an unparalleled view into the processes that govern the rifting of , little is known about the history and spatial pattern of vertical motions over the past million years.

Over this time, plate motions have changed significantly, with extension and rock uplift possibly migrating from the center of the rift to its southern margin on the Papuan Peninsula.

In order to better understand the mechanisms that have brought deeply exhumed rocks to Earth's surface, a community of earth scientists has been working to understand the history and pattern of vertical rock motions within the Woodlark Rift.

In this study, Scott Miller and colleagues present data about the lengthwise elevations of rivers draining the D'Entrecasteaux Islands and the Papuan Peninsula.

These rivers are gauges that adjust their slopes in response to mountain-building processes, such that their profile shapes record patterns in the amount and history of rock uplift and, hence, .

These river profiles indicate that the islands and the peninsula have increased in mean elevation, likely over the past few hundred thousand years.

This study is part of a growing body of work that suggests that profound rock uplift continues to the present day in both the D'Entrecasteaux Islands and the Papuan Peninsula, driven by continental extension and upwelling, buoyant mantle.

Explore further: Lightning plus volcanic ash make glass

More information: Scott R. Miller et al., Dept. of Earth Sciences, 204 Heroy Geology Laboratory, Syracuse University, Syracuse, New York 13244, USA. Lithosphere. Posted online 25 Jan. 2012; print issue: April 2012; doi: 10.1130/L135.1

Provided by Geological Society of America

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Formation of the Gulf of Corinth rift, Greece

Dec 22, 2009

A study of the structure and evolution of the Gulf of Corinth rift in central Greece will increase scientific understanding of rifted margin development and the tectonic mechanisms underlying seafloor spreading ...

Geologists correct a rift in Africa

Mar 26, 2012

The huge changes in the Earth's crust that influenced human evolution are being redefined, according to research published today in Nature Geoscience.

New insights into volcanic activity on the ocean floor

Jun 16, 2010

New research reveals that when two parts of the Earth's crust break apart, this does not always cause massive volcanic eruptions. The study, published today in the journal Nature, explains why some parts ...

Recommended for you

Lightning plus volcanic ash make glass

1 hour ago

In their open-access paper for Geology, Kimberly Genareau and colleagues propose, for the first time, a mechanism for the generation of glass spherules in geologic deposits through the occurrence of volcan ...

A new level of earthquake understanding

6 hours ago

As everyone who lives in the San Francisco Bay Area knows, the Earth moves under our feet. But what about the stresses that cause earthquakes? How much is known about them? Until now, our understanding of ...

Combined Arctic ice observations show decades of loss

9 hours ago

It's no surprise that Arctic sea ice is thinning. What is new is just how long, how steadily, and how much it has declined. University of Washington researchers compiled modern and historic measurements to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.