Tiny fractal trees for solar power

March 5, 2012
Fractal silver structures grown by electrochemical reduction of silver nitrate on a fluorine doped tin oxide film. These structures could be the basis of a new type of solar cell. Credit: Frank Osterloh, UC Davis

Microscopic "fractal trees" grown from silver could be the basis of a new type of solar cell, say chemists at the University of California, Davis.

"We expect these structures will allow us to make better, more efficient solar cells," said Professor Frank Osterloh, a principal investigator on the $100,000 grant.

Fractals are patterns that repeat over multiple length scales. In this case, branches of 1-50th the width of a human hair are themselves branched, and smaller branches grow on those branches, forming a treelike pattern.

In a solar cell application, the silver trees are coated with light-absorbing polymers. When (photons) hit the polymer coat, they produce short-lived electrons and holes in the polymer. The positively charged holes are collected through the silver branches, while the electrons move to the counterelectrode to create an electrical potential.

Osterloh compared the structures to real trees, which use a fractal structure of branches to twigs to spread a wide canopy of leaves for sunlight collection. Similarly, the nanosized silver trees will have a large surface area.

Osterloh's lab at UC Davis will fabricate the , which will be characterized by collaborators Sean Shaheen at the University of Denver and Richard Taylor, University of Oregon. Boaz Ilan, UC Merced, will carry out computer modeling on the systems.

Explore further: 'Silver nanoparticle' microscope may shed new light on cancer, bone diseases

Related Stories

Silver Nanoparticles Give Polymer Solar Cells A Boost

October 5, 2009

(PhysOrg.com) -- Small bits of metal may play a new role in solar power. Researchers at Ohio State University are experimenting with polymer semiconductors that absorb the sun’s energy and generate electricity. The goal: ...

Uncovering Da Vinci's rule of the trees

November 30, 2011

As trees shed their foliage this fall, they reveal a mysterious, nearly universal growth pattern first observed by Leonardo da Vinci 500 years ago: a simple yet startling relationship that always holds between the size of ...

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Jeffhans1
1 / 5 (1) Mar 05, 2012
Good job. Now find a way to make the same type of structure out of something that is cheaper like say Carbon Nanotubes.
julesruis
not rated yet Mar 07, 2012
For more information about Fractal Trees, see: fractal.org

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.