'Tidal Venuses' may have been wrung out to dry

Mar 29, 2012 by Jason Major, Universe Today
Extreme heating from tidal stresses may render a "Tidal Venus" planet inhabitable

Earth-sized exoplanets within a distant star’s habitable zone could still be very much uninhabitable, depending on potential tidal stresses — either past or present — that could have "squeezed out" all the water, leaving behind a bone-dry ball of rock.

New research by an international team of scientists suggests that even a moderately eccentric within a star’s could exert tidal stress on an Earth-sized planet, enough that the increased surface heating due to friction would boil off any liquid water via extreme greenhouse effect.

Such planets are dubbed “Tidal Venuses”, due to their resemblance to our own super-heated planetary neighbor. This evolutionary possibility could be a factor in determining the actual habitability of an exoplanet, regardless of how much solar heating (insolation) it receives from its star.

The research, led by Dr. Rory Barnes of the University of Washington in Seattle, states that even an exoplanet currently in a circular, stable orbit could have formed with a much more eccentric orbit, thus subjecting it to tidal forces. Any liquid water present after formation would then have been slowly but steadily evaporated and the necessary hydrogen atoms lost to space.

The risk of such a “desiccating greenhouse” effect would be much greater on exoplanets orbiting lower-luminosity stars, since any potential habitable zone would be closer in to the star and thus prone to stronger tidal forces.

And as far as such an effect working to create habitable zones further out in orbit than otherwise permissible by stellar radiation alone… well, that wouldn’t necessarily be the case.

Even if an exoplanetary version of, say, Europa, could be heated through tidal forces to maintain on or below its surface, a rocky world the size of (or larger) would still likely end up being rather inhospitable.

“One couldn’t do it for an Earthlike planet — the tidal heating of the interior would likely make the surface covered by super-volcanoes,” Dr. Barnes told Universe Today.

So even though the right-sized may be found in the so-called “Goldilocks zone” of their star, they may still not be “just right” for life as we know it.

The team’s full paper can be found here.

Explore further: Computers beat brainpower when it comes to counting stars

add to favorites email to friend print save as pdf

Related Stories

Goldilocks moons

Jan 16, 2012

The search for extraterrestrial life outside our Solar System is currently focused on extrasolar planets within the ‘habitable zones’ of exoplanetary systems around stars similar to the Sun. Finding ...

Do moons of gas giants affect the habitable zone?

Mar 07, 2012

(PhysOrg.com) -- If you aren’t familiar with the Drake Equation, or how it may actually apply to exomoons, continue reading to learn more about the famous equation. Additionally, what conditions could ...

Recommended for you

ESO image: A study in scarlet

15 hours ago

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

Apr 15, 2014

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

Pushy neighbors force stellar twins to diverge

Apr 15, 2014

(Phys.org) —Much like an environment influences people, so too do cosmic communities affect even giant dazzling stars: Peering deep into the Milky Way galaxy's center from a high-flying observatory, Cornell ...

Image: Multiple protostars within IRAS 20324+4057

Apr 14, 2014

(Phys.org) —A bright blue tadpole appears to swim through the inky blackness of space. Known as IRAS 20324+4057 but dubbed "the Tadpole", this clump of gas and dust has given birth to a bright protostar, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

SnowballSolarSystem _SSS_
1 / 5 (3) Mar 29, 2012
Funny you should say so since Venus may at one time have been tidally locked to the 'sun'.

Our sun may have formed as a binary pair that merged in a luminous red nova (LRN) at 4.567 Ga, and Venus may have been tidally locket to the close binary pair.

When the binary pair merged, a small portion of the central mass was ejected by the LRN shock wave, causing a slight increase in the semi-major axes of the planets, causing formerly tidally-locked Venus to rotate in a very slow retrograde direction.

More news stories

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Red moon at night; stargazer's delight

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

Let's put a sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...