New 'thermal' approach to invisibility cloaking hides heat to enhance technology

Mar 26, 2012
This figure shows that the object in the center of the cloak (letters OSA) stays cold, while the heat diffuses elsewhere. The source of the heat is on the left-hand side and at a constant temperature of 100°C, and the material inside the invisibility region remains cold. Credit: Image courtesy Sebastien Guenneau, Institut Fresnel, CNRS/AMU

In a new approach to invisibility cloaking, a team of French researchers has proposed isolating or cloaking objects from sources of heat—essentially "thermal cloaking." This method, which the researchers describe in the Optical Society's open-access journal Optics Express, taps into some of the same principles as optical cloaking and may lead to novel ways to control heat in electronics and, on an even larger scale, might someday prove useful for spacecraft and solar technologies.

Recent advances in invisibility cloaks are based on the physics of transformation optics, which involves metamaterials and bending light so that it propagates around a space rather than through it. Sebastien Guenneau, affiliated with both the University of Aix-Marseille and France's Centre National de la Recherche Scientifique (CRNS), decided to investigate, with CRNS colleagues, whether a similar approach might be possible for thermal diffusion.

"Our key goal with this research was to control the way diffuses in a manner similar to those that have already been achieved for waves, such as light waves or sound waves, by using the tools of transformation optics," says Guenneau.

Though this technology uses the same fundamental theories as recent advances in optical cloaking, there is a key difference. Until now, he explains, cloaking research has revolved around manipulating trajectories of waves. These include electromagnetic (light), pressure (sound), elastodynamic (seismic), and hydrodynamic (ocean) waves. The biggest difference in their study of heat, he points out, is that the physical phenomenon involved is diffusion, not wave propagation.

"Heat isn't a wave—it simply diffuses from hot to cold regions," Guenneau says. "The mathematics and physics at play are much different. For instance, a wave can travel long distances with little attenuation, whereas temperature usually diffuses over smaller distances."

To create their thermal invisibility cloak, Guenneau and colleagues applied the mathematics of transformation optics to equations for thermal diffusion and discovered that their idea could work.

In their two-dimensional approach, heat flows from a hot to a cool object with the magnitude of the heat flux through any region in space represented by the distance between isotherms (concentric rings of diffusivity). They then altered the geometry of the isotherms to make them go around rather than through a circular region to the right of the heat source—so that any object placed in this region can be shielded from the flow of heat (see image).

"We can design a so that heat diffuses around an invisibility region, which is then protected from heat. Or we can force heat to concentrate in a small volume, which will then heat up very rapidly," Guenneau says.

The ability to shield an area from heat or to concentrate it are highly desirable traits for a wide range of applications. Shielding nanoelectronic and microelectronic devices from overheating, for example, is one of the biggest challenges facing the electronics and semiconductor industries, and an area in which thermal cloaking could have a huge impact. On a larger scale and far into the future, large computers and spacecraft could also benefit greatly. And in terms of concentrating heat, this is a characteristic that the solar industry should find intriguing.

Guenneau and colleagues are now working to develop prototypes of their thermal cloaks for microelectronics, which they expect to have ready within the next few months.

Explore further: 'Comb on a chip' powers new atomic clock design

More information: "Transformation Thermodynamics: Cloaking and Concentrating Heat Flux," Guenneau et al., Optics Express, Vol. 20, Issue 7, pp. 8207-8218.

Related Stories

Tsunami Invisibility Cloak

Sep 26, 2008

Rather than building stronger ocean-based structures to withstand tsunamis, it might be easier to simply make the structures disappear.

Scientists closer to making invisibility cloak a reality

Mar 05, 2009

J.K. Rowling may not have realized just how close Harry Potter's invisibility cloak was to becoming a reality when she introduced it in the first book of her best-selling fictional series in 1998. Scientists, however, have ...

New invisibility cloak hides objects from human view

Jul 27, 2011

For the first time, scientists have devised an invisibility cloak material that hides objects from detection using light that is visible to humans. The new device is a leap forward in cloaking materials, according to a report ...

Scientists create first free-standing 3-D cloak

Jan 26, 2012

Researchers in the US have, for the first time, cloaked a three-dimensional object standing in free space, bringing the much-talked-about invisibility cloak one step closer to reality.

Recommended for you

'Comb on a chip' powers new atomic clock design

21 hours ago

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Creating optical cables out of thin air

Jul 22, 2014

Imagine being able to instantaneously run an optical cable or fiber to any point on earth, or even into space. That's what Howard Milchberg, professor of physics and electrical and computer engineering at ...

New material puts a twist in light

Jul 18, 2014

Scientists at The Australian National University (ANU) have uncovered the secret to twisting light at will. It is the latest step in the development of photonics, the faster, more compact and less carbon-hungry ...

User comments : 0