Study supports theory of extraterrestrial impact

Study supports theory of extraterrestrial impact
This image shows the "tectonic" effects of the collision of one spherule with another during the cosmic impact. Credit: UCSB

A 16-member international team of researchers that includes James Kennett, professor of earth science at UC Santa Barbara, has identified a nearly 13,000-year-old layer of thin, dark sediment buried in the floor of Lake Cuitzeo in central Mexico. The sediment layer contains an exotic assemblage of materials, including nanodiamonds, impact spherules, and more, which, according to the researchers, are the result of a cosmic body impacting Earth.

These new data are the latest to strongly support of a controversial hypothesis proposing that a major cosmic impact with Earth occurred 12,900 years ago at the onset of an unusual cold climatic period called the Younger Dryas. The researchers' findings appear today in the .

Conducting a wide range of exhaustive tests, the researchers conclusively identified a family of nanodiamonds, including the impact form of nanodiamonds called lonsdaleite, which is unique to cosmic impact. The researchers also found spherules that had collided at high velocities with other spherules during the chaos of impact. Such features, Kennett noted, could not have formed through anthropogenic, volcanic, or other natural terrestrial processes. "These materials form only through cosmic impact," he said.

Study supports theory of extraterrestrial impact
These images of single and twinned nanodiamonds show the atomic lattice framework of the nanodiamonds. Each dot represents a single atom. Credit: UCSB

The data suggest that a or asteroid –– likely a large, previously fragmented body, greater than several hundred meters in diameter –– entered the atmosphere at a relatively shallow angle. The heat at impact burned biomass, melted surface rocks, and caused major environmental disruption. "These results are consistent with earlier reported discoveries throughout North America of abrupt ecosystem change, megafaunal extinction, and human cultural change and population reduction," Kennett explained.

The sediment layer identified by the researchers is of the same age as that previously reported at numerous locations throughout North America, Greenland, and Western Europe. The current discovery extends the known range of the nanodiamond-rich layer into Mexico and the tropics. In addition, it is the first reported for true lake deposits.

Study supports theory of extraterrestrial impact
This is James Kennett. Credit: University of California - Santa Barbara

In the entire geologic record, there are only two known continent-wide layers with abundance peaks in nanodiamonds, impact spherules, and aciniform soot. These are in the 65-million-year-old Cretaceous-Paleogene

boundary layer that coincided with major extinctions, including the dinosaurs and ammonites; and the Younger Dryas boundary event at 12,900 years ago, closely associated with the extinctions of many large North American animals, including mammoths, mastodons, saber-tooth cats, and dire wolves.

"The timing of the impact event coincided with the most extraordinary biotic and environmental changes over Mexico and Central America during the last approximately 20,000 years, as recorded by others in several regional lake deposits," said Kennett. "These changes were large, abrupt, and unprecedented, and had been recorded and identified by earlier investigators as a 'time of crisis.' "

More information: “New evidence from Central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis,” by Isabel Israde-Alcántara et al. PNAS, 2012.

Citation: Study supports theory of extraterrestrial impact (2012, March 5) retrieved 19 March 2024 from https://phys.org/news/2012-03-theory-extraterrestrial-impact.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Six North American sites hold 12,900-year-old nanodiamond-rich soil

0 shares

Feedback to editors