Smaller genome, greater applications

Mar 26, 2012

Bacteria are often the ideal machines in industry. The inputs they require are cheap substances such as amino acids and sugar, and their outputs are valuable products such as bioplastics.

The production processes involved are cheap and in many cases sustainable. But these bacteria were not of course designed for our convenience but formed by . So they can be made even more efficient for our purposes.

One method that does not seem an obvious choice, however, is randomly removing pieces of DNA. Yet that is exactly what Wageningen UR microbiologists did with the putida bacterium. And successfully, too. The bacterium turned out to be perfectly able to manage without 7 percent of its . The researchers will be publishing an article on their technique in a forthcoming edition of .

‘Bacteria can easily do without many genes because they are not essential or only under specific circumstances', says Audrey Leprince, researcher at the Laboratory of Systems and Synthetic Biology. ‘A reduced genome of this kind makes the bacterium more stable, more predictable and more efficient.' The perfect ‘chassis' for designing an industrially serviceable bacterium.

Fast and cheap

Leprince streamlined the genome by removing parts of it at random. To do this she first introduced a target sequence in two randomly selected places. Then she forced the bacterium to make a recombination enzyme that cuts the DNA in the target sequences and glues the loose ends together. As long as no essential gene is missing, the bacterium survives. Leprince then identified the genes that had been removed and started on another round of reduction.

‘Of course, the big question is: how far can we go?' says Leprince. She does the sums: there are about 5,400 genes in the bacterium. Of these, about 1,500 are essential and then there are some genes related to growing conditions. ‘Ultimately, I think we can wipe out at least half of the genome. Why not?'

The advantage of the method is its speed and relatively low cost. Other methods demand prior knowledge of the sequence in order to remove specific pieces of it. Leprince thinks her method can therefore be used straightaway in other . What is more, it helps scientists gain insight into the way the works. After all, it reveals which genes are essential and when.

Explore further: The malaria pathogen's cellular skeleton under a super-microscope

Provided by Wageningen University

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Bacteria use caffeine as food source

May 24, 2011

A new bacterium that uses caffeine for food has been discovered by a doctoral student at the University of Iowa. The bacterium uses newly discovered digestive enzymes to break down the caffeine, which allows it to live and ...

Mass copying of genes speeds up evolution

Oct 31, 2006

In the latest issue of PNAS, Proceedings of the National Academy of Sciences, a Swedish-American team of researchers show how selective gene amplification-­mass copying of a specific gene­-can increase the speed with w ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

18 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

19 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.