Are silver nanoparticles harmful?

Mar 14, 2012

Silver nanoparticles cause more damage to testicular cells than titanium dioxide nanoparticles, according to a recent study by the Norwegian Institute of Public Health. However, the use of both types may affect testicular cells with possible consequences for fertility.

Nanotechnology is increasingly used in consumer products, medicines and building products. The potential risks of using engineered nanoparticles need to be monitored so that the industry can develop products that are safe for humans and nature.

Previous research has shown that nanoparticles can cross both the blood-brain barrier and blood-testes barrier in mice and rats, and are taken up by cells. This study aimed to see if silver and nanoparticles had any effect on human and mice testicular cells.

The researchers found that silver nanoparticles had a on cells, suppressing cellular growth and multiplication and causing cell death depending on concentrations and duration of exposure. The effect was weaker for titanium dioxide nanoparticles, although both types did cause cell type-specific DNA damage, with possible implications on reproduction as well as human and environmental health.

"It seems that the type of nanoparticle, and not the size alone, may be the limiting factor" says Nana Asare, primary author of the study published in Toxicology.

Further studies using in vivo models are needed to study the impact of nanoparticles on .

The researchers used cells from a human testicular carcinoma cell line and testicular cells from two strains of mice, one of which is genetically modified to serve as a representative model for human male reproductive toxicity. The cells were exposed to titanium dioxide nanoparticles (21nm) and two different sizes of silver nanoparticles (20 nm and 200nm) over different concentrations and time periods. Both sizes of silver nanoparticles inhibited normal cell function and caused more than the titanium dioxide . In particular, the 200 nm silver particles caused a concentration-dependent increase in in the human cells.

Explore further: Nano-scale gold particles are good candidates for drug delivery

More information: Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology, 291: 65-72 (2012)

Provided by Norwegian Institute of Public Health

1 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Nanoparticles cause brain injury in fish

Sep 19, 2011

Scientists at the University of Plymouth have shown, for the first time in an animal, that nanoparticles have a detrimental effect on the brain and other parts of the central nervous system.

Silver nanoparticles trap mercury

Feb 16, 2012

(PhysOrg.com) -- Anyone who thinks amalgams are limited to tooth fillings is missing something: Amalgams, which are alloys of mercury and other metals, have been used for over 2500 years in the production ...

Recommended for you

Graphene surfaces on photonic racetracks

9 hours ago

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

9 hours ago

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

10 hours ago

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0