Scientists use rare mineral to correlate past climate events in Europe, Antarctica

Mar 21, 2012

The first day of spring brought record high temperatures across the northern part of the United States, while much of the Southwest was digging out from a record-breaking spring snowstorm. The weather, it seems, has gone topsy-turvy. Are the phenomena related? Are climate changes in one part of the world felt half a world away?

To understand the present, scientists look for ways to unlock information about past climate hidden in the fossil record. A team of scientists led by Syracuse University geochemist Zunli Lu has found a new key in the form of ikaite, a rare mineral that forms in cold waters. Composed of and water, ikaite crystals can be found off the coasts of Antarctica and Greenland.

"Ikaite is an icy version of limestone," say Lu, assistant professor of earth sciences in SU's College of Arts and Sciences. "The crystals are only stable under cold conditions and actually melt at room temperature."

It turns out the water that holds the crystal structure together (called the hydration water) traps information about temperatures present when the crystals formed. This finding by Lu's research team establishes, for the first time, ikaite as a reliable proxy for studying past climate conditions. The research was recently published online in the journal and will appear in print on April 1. Lu conducted most of the experimental work for the study while a post-doctoral researcher at Oxford University. Data interpretation was done after he arrived at SU.

The scientists studied ikaite crystals from drilled off the coast of Antarctica. The were deposited over 2,000 years. The scientists were particularly interested in crystals found in layers deposited during the "Little Ice Age," approximately 300 to 500 years ago, and during the "," approximately 500 to 1,000 years ago. Both have been documented in Northern Europe, but studies have been inconclusive as to whether the conditions in Northern Europe extended to Antarctica.

Ikaite crystals incorporate ocean bottom water into their structure as they form. During cooling periods, when ice sheets are expanding, ocean bottom water accumulates heavy oxygen isotopes (oxygen 18). When glaciers melt, fresh water, enriched in light oxygen isotopes (oxygen 16), mixes with the bottom water. The scientists analyzed the ratio of the oxygen isotopes in the hydration water and in the calcium carbonate. They compared the results with climate conditions established in Northern Europe across a 2,000-year time frame. They found a direct correlation between the rise and fall of oxygen 18 in the crystals and the documented warming and cooling periods.

"We showed that the Northern European climate events influenced in Antarctica," Lu says. "More importantly, we are extremely happy to figure out how to get a climate signal out of this peculiar mineral. A new proxy is always welcome when studying past climate changes."

Explore further: Strong quake hits east Indonesia; no tsunami threat

Provided by Syracuse University

4.5 /5 (4 votes)
add to favorites email to friend print save as pdf

Related Stories

Seafloor Fossils Provide Clues on Climate Change

Oct 22, 2009

Deep under the sea, a fossil the size of a sand grain is nestled among a billion of its closest dead relatives. Known as foraminifera, these complex little shells of calcium carbonate can tell you the sea ...

Recommended for you

Strong quake hits east Indonesia; no tsunami threat

19 hours ago

A strong earthquake struck off the coast of eastern Indonesia on Sunday evening, but there were no immediate reports of injuries or damage, and authorities said there was no threat of a tsunami.

Scientists make strides in tsunami warning since 2004

Dec 19, 2014

The 2004 tsunami led to greater global cooperation and improved techniques for detecting waves that could reach faraway shores, even though scientists still cannot predict when an earthquake will strike.

Trade winds ventilate the tropical oceans

Dec 19, 2014

Long-term observations indicate that the oxygen minimum zones in the tropical oceans have expanded in recent decades. The reason is still unknown. Now scientists at the GEOMAR Helmholtz Centre for Ocean Research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.