Scientists unlock key to cancer cell death mystery

March 26, 2012

An international team of scientists has announced a new advance in the ability to target and destroy certain cancer cells.

A group led by the University of Leicester has shown that particular cancer cells are especially sensitive to a protein called p21. This protein usually forces normal and cancer cells to stop dividing but it was recently shown that in some cases it can also kill .

However, scientists have been unclear about how this happens.

Researcher Salvador Macip, from the University of Leicester Department of Biochemistry, said: "If we could harness this 'killing power' that p21 has, we could think of designing new therapies aimed at increasing its levels in tumours. This is what motivated us to look into it".

Now the team from the universities of Leicester and Cardiff in the UK, University of South Carolina, USA and Karolinska Institutet, Sweden has discovered that cells from sarcomas tend to die in response to p21 and that this is determined by the sensitivity of their to oxidants.

They have published their findings in The . The research was funded by the MRC, the NIH, CONACYT and the Swedish Cancer Society

Dr Macip added: "Our research also showed that p21 can kill cells even in the absence of p53, a protein that is in the main responsible for but is inactivated in most cancers.

"This shows that certain , sarcomas for instance, but maybe also others, should respond well to drugs that increase the levels of p21, even if they don't have an active . The side effects of these therapies should be minimal, since our experiments show that normal cells would arrest but not die in response to p21.

"There are already drugs available that selectively increase p21. Our results provide a rationale for testing them in certain types of cancers, which could be identified using the experiments we describe."

Explore further: Potential new therapeutic molecular target to fight cancer

More information: Reactive oxygen species and mitochondrial sensitivity to oxidative stress determine induction of cancer cell death by p21. Masgras I, Carrera S, de Verdier PJ, Brennan P, Majid A, Makhtar W, Tulchinksy E, Jones GD, Roninson IB, Macip S. J Biol Chem. 2012 Feb 6. [Epub ahead of print]

The Journal of Biological Chemistry, Vol. 287, Issue 13, 9845-9854, MARCH 23, 2012

Related Stories

Potential new therapeutic molecular target to fight cancer

November 1, 2007

Researchers at the Virginia Commonwealth University Massey Cancer Center have identified the enzyme sphingosine kinase 2 as a possible new therapeutic target to improve the efficacy of chemotherapy for colon and breast cancer.

Discovery offers hope for treating kidney cancer

December 23, 2008

Kidney cancer is typically without symptoms until it has spread to other organs, when it is also the most difficult to treat. Newer chemotherapies show great promise for extending survival during later disease stages, but ...

Recommended for you

New hydrogel bandage for burns less painful to remove

July 29, 2016

(Phys.org)—A combined team of researchers from Boston University and Beth Israel Deaconess Medical Center, also in Boston, has published a paper in the journal Angewandte Chemie describing a new type of hydrogel they have ...

Researchers study how cobalt catalysts produce hydrogen

July 29, 2016

It's the worst short story ever written: on a dark and stormy night; the end. The real story—the context, the tension, and the motivations—are missing. That's what it feels like for scientists reading the reaction that ...

Why do antidepressants take so long to work?

July 28, 2016

An episode of major depression can be crippling, impairing the ability to sleep, work, or eat. In severe cases, the mood disorder can lead to suicide. But the drugs available to treat depression, which can affect one in six ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.