Two scientific articles on graphene-based sensors prove popular in the research community

Mar 28, 2012

When it comes to checking for trace levels of chemicals that could be the early warning signs of disease or chemical exposure, doctors and patients want to use as small of blood samples as possible. This drive for small samples is spurring the scientific community to examine graphene: durable, conductive, and easy-to-tailor two-dimensional carbon sheets. Two articles on graphene biosensors by scientists at Pacific Northwest National Laboratory and Princeton University have proven quite popular. The articles are being regularly accessed online and are amassing citations.

The first article is on creating a glucose detector by combining graphene with a glucose-sensing enzyme and chitosan. Because graphene has a high surface-to-volume ratio and excellent electron conductivity, the researchers immobilized enzymes in graphene/chitosan nanocomposite film and demonstrated the excellent sensitivity and stability for measuring glucose. This article, in in 2009, has been cited 128 times, and is in the list of most-cite articles of the journal.

In another popular article, the authors reviewed graphene-based sensors. They covered the , including how electrons move between the graphene electrode and the enzyme without mediators. They also discuss graphene-based electrodes for detecting dopamine and other biomolecules for industrial and clinical uses. Scientists have cited the paper 123 times, and it was the second most accessed article in Wiley's Electroanalysis in February 2012.

Explore further: Solar cells made from polar nanocrystal inks show promising early performance

More information: Shao Y, J et al.  2010.  "Graphene Based Electrochemical Sensors and Biosensors: A Review."  Electroanalysis 22(10):1027-1036.  doi:10.1002/elan.200900571

Kang X, et al.  2009.  "Glucose Oxidase-Graphene-Chitosan Modified Electrode for Direct Electrochemistry and Glucose Sensing."  Biosensors and Bioelectronics 25(4):901-905.  doi:10.1016/j.bios.2009.09.004

add to favorites email to friend print save as pdf

Related Stories

Flaky graphene makes reliable chemical sensors

Jan 17, 2012

Scientists from the University of Illinois at Urbana-Champaign and the company Dioxide Materials have demonstrated that randomly stacked graphene flakes can make an effective chemical sensor.

Seeing an atomic thickness

May 19, 2011

Scientists from NPL, in collaboration with Linkoping University, Sweden, have shown that regions of graphene of different thickness can be easily identified in ambient conditions using Electrostatic Force ...

Scientists produce graphene using microorganisms

Mar 22, 2012

The Graphene Research Group at Toyohashi University of Technology (Japan) reports on the synthesis of graphene by reducing graphene oxide using microorganisms extracted from a local river.

Recommended for you

Shiny quantum dots brighten future of solar cells

Apr 14, 2014

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

User comments : 0

More news stories

Shiny quantum dots brighten future of solar cells

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

Polymer microparticles could help verify goods

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.