The time is ripe for Salmonella

Mar 26, 2012
This image shows the association of Escherichia coli with rocket leaves. Credit: Rob Shaw

The ripeness of fruit could determine how food-poisoning bacteria grow on them, according to scientists presenting their work at the Society for General Microbiology's Spring Conference in Dublin this week. Their work could lead to new strategies to improve food safety, bringing many health and economic benefits.

A wide range of has been linked to outbreaks of and including melons, jalapeño and serrano peppers, basil, lettuce, horseradish sprouts and tomatoes. Researchers at Imperial College London are looking at how these bacterial pathogens latch onto fruits and vegetables and establish themselves in the first place.

They have discovered that strains of Salmonella behave differently when attached to ripe and unripe tomatoes. " that attach to ripe tomatoes produce an extensive network of filaments, which is not seen when they attach to the surface of unripe tomatoes. This could affect how they are maintained on the surface," explained Professor Gad Frankel who is leading the research. "We are not completely sure yet why this happens; it might be due to the surface properties of the tomatoes or alternatively the expression of ripening hormones."

This is just one example of the subtle interplay between food-poisoning microbes and the fresh produce they contaminate, that determines how pathogens become established in the food chain. "Apart from Salmonella, strains of E. coli are also particularly devious in the way they interact with plant surfaces. They have hair-like appendages and flagella they can use as hooks to successfully secure themselves onto things like salad leaves."

Although fresh fruits and vegetables are recognized as important vehicles that transmit harmful bacteria, they are still important components of a healthy and balanced diet. "By and large, raw fruits and vegetables are safe to eat and provide numerous health benefits. By working out the reasons behind sporadic outbreaks of infections, we can control these better and help maintain consumer confidence. By improving we would also see important economical and health benefits."

Understanding how bacteria interact with fresh produce is a crucial but only the first step, explained Professor Frankel. "Translating research into new policies or methods for decontamination is the challenge for future studies," he said.

Explore further: How plant cell compartments change with cell growth

Provided by Society for General Microbiology

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Extension has tomato-handling tips for consumers

Jun 24, 2008

The discovery of Salmonella in certain tomato varieties has caused a series of food-poisoning outbreaks throughout the United States and put the media and the public's eye on food safety. Renee Boyer, consumer ...

Light, photosynthesis help bacteria invade fresh produce

Sep 28, 2009

Exposure to light and possibly photosynthesis itself could be helping disease-causing bacteria to be internalized by lettuce leaves, making them impervious to washing, according to research published in the October issue ...

Recommended for you

How plant cell compartments change with cell growth

20 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

20 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

21 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

21 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0