New study queries interactions of metal-reducing bacteria with plutonium oxide

Mar 19, 2012
Left: Transmission electron microcsopy image of S. oneidensis treated with PuO2·xH2O(am) after 48 hours with H2. Right: Optical spectra of in vitro assays with the purified recombinant DMRB outer-membrane c-type cytochrome MtrC, after 3 days of incubation.

( -- Recent work by scientists at Pacific Northwest National Laboratory has shed new light on the perplexing environmental chemistry of plutonium. They demonstrated that under anaerobic, or oxygen-free, conditions, plutonium(IV) hydrous oxide, the most common subsurface form of plutonium, does not become very soluble. In fact, this amorphous Pu solid becomes more crystalline when it contacts dissimilatory iron-reducing bacteria (DIRB).

However, other compounds disposed with the Pu also interact with it. When Pu comes in contact with EDTA, a chelating agent, its decreases, and the resulting chemical form is dramatically more soluble. In addition, Pu's reduction and increase in solubility is dramatically increased by the electron shuttle anthraquinone-2,6-disulfonate, or AQDS.

Underneath some locations at the Hanford Site in southeastern Washington State, and other exist as a result of past plutonium production efforts at the site. Scientists at PNNL and collaborators have been studying the of the subsurface to understand the impacting the fate and transport of Pu in the subsurface.

This information is needed to develop effective approaches for isolating and removing the contaminants before they can impact humans and the environment. Plutonium in particular is a challenge to study, because of the complexity of its chemistry and the difficulty of working with it because of the extensive required.

The purpose of this study was to determine the extent to which the iron-reducing bacteria, Shewanella oneidensis and sulfurreducens, reduce and solubilize Pu(IV) hydrous oxide in the presence and absence of potential abiotic complexants. A second purpose was to determine the effect of AQDS on the rate and extent of Pu(IV) reduction and solubilization. 

The research, which appears in the American Chemical Society journal Environmental Science & Technology, adds to the understanding of potential processes affecting prediction of plutonium mobility. It provides additional evidence that Pu(III) combined with a chelating agent is more likely to be mobile, thus able to reach the water table and other environment, than Pu(IV) combined with the same agent. It also highlights the environmental importance of colloidal plutonium—meaning that instead of moving as a dissolved salt, the radionuclide may move as a very tiny suspended form.

The scientists systematically studied mobilization and speciation, or evolution, of plutonium in the presence of various combinations of DIRB, EDTA, and AQDS, along with hydrogen (H2), a strong reductant and energy source for bacteria that can be formed in the environment either biotically or abiotically. They used liquid scintillation counting, solvent extraction, and optical absorbance spectrometry to show that in the absence of EDTA, Pu(IV) hydroxide reduction results in many orders of magnitude less Pu mobilization than in the presence of EDTA.

Using X-ray absorption spectroscopy at Argonne National Laboratory and transmission electron microscopy at the University of Nevada, Las Vegas, they showed that Pu(IV) hydroxide becomes more crystalline in the presence of DIRB or MtrC, an electron transfer protein isolated and characterized by PNNL scientists from Shewanella oneidensis. Abiotic controls provided novel results on abiotic reduction and solubilization of plutonium hydrous oxide in the presence of H2.

"Beyond its direct environmental relevance to plutonium mobility, our study gave us an unusual opportunity to interrogate plutonium redox chemistry using biology, while also exploring biology using an unusual solid-phase geochemical, plutonium hydrous oxide," said Andy Plymale, a PNNL scientist and lead author of the paper.  

The scientists want to address the fate of the reduced and soluble Pu(III)-EDTA under conditions that could re-oxidize the Pu.  Also of interest is the extent to which the Pu(III) could form mobile colloids under environmental conditions.  Likewise, of environmental interest are the effects of natural subsurface milieu on the solubility of the reduced Pu; for example, recent work at PNNL showed that phosphate, a common nutrient anion, can form strong insoluble precipitates with Pu(III), retarding its mobility.

Explore further: US delays decision on Keystone pipeline project

More information: Plymale AE, et al., Jr. 2012. "Biotic and Abiotic Reduction and Solubilization of Pu(IV)O2•xH2O(am) as Affected by Anthraquinone-2,6-disulfonate (AQDS) and Ethylenediaminetetraacetate (EDTA)." Environmental Science & Technology 46(4):2132-2140, DOI: 10.1021/es2030752

Related Stories

Scientists discover historic sample of bomb-grade plutonium

Feb 26, 2009

( -- Scientists in Washington state are reporting the surprise discovery of the oldest known sample of reactor-produced bomb-grade plutonium, a historic relic from the infancy of America’s nuclear weapons program. ...

Recommended for you

US delays decision on Keystone pipeline project

Apr 18, 2014

The United States announced Friday a fresh delay on a final decision regarding a controversial Canada to US oil pipeline, saying more time was needed to carry out a review.

New research on Earth's carbon budget

Apr 18, 2014

( —Results from a research project involving scientists from the Desert Research Institute have generated new findings surrounding some of the unknowns of changes in climate and the degree to which ...

User comments : 0

More news stories

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...