Novel plastics and textiles from waste with the use of microbes

Mar 16, 2012

New biotechnological and chemical methods will facilitate efficient production of chemicals, materials and fuels from renewable natural resources. The Academy of Finland Centre of Excellence (CoE) in White Biotechnology – Green Chemistry Research focuses on the research and development of microbial cells, or cell factories, for producing new useful compounds from sugars in plant biomass. These compounds can be used, for example, for manufacturing bioplastics or in medical applications.

"By means of gene technology, we can modify microbial metabolism and thereby produce organic acids for a wide range of industrial applications. They can be used, among other things, for manufacturing new plastic and textile materials, or packaging technologies," explains Merja Penttilä, Research Professor and Director of the Centre of Excellence from VTT Technical Research Centre of Finland.

New methods play a key role when various industries are developing environmentally friendly and energy-efficient production processes. Use of renewable natural resources, such as agricultural or industrial waste materials, to replace oil-based will make industries less dependent of fossil raw materials and, consequently, reduce carbon dioxide emissions into the atmosphere.

The CoE also develops highly sensitive measuring methods and investigates microbial cell functions at molecular level. "We need this information to be able to develop efficient bioprocesses for the future. For instance, we build up new micro- and nanoscale instruments for measuring and controlling microbial productivity in bioreactors during production."

Alternatives for oil

The metabolism of microbes is modified so that they will convert plant biomass sugars into sugar acids and their derivatives. These compounds can potentially serve as raw materials for new types of polyesters, whose properties – such as water solubility and extremely rapid degradation into natural substances – can be used, for example, in medicine. By modifying sugar acids, it is also possible to produce compounds that may replace oil-based aromatic acids in the manufacture of thermosetting plastics and textiles.

"Sugar acids can be used to produce biodegradable technical plastics, including polyamides, or functional components that increase the ability of cellulose to absorb water. Novel materials could replace the currently available non-biodegradable absorbent components in hygiene products. Sugar acids are also a source of hydroxy acids, such as glycolic acid, whose oxygen-barrier properties make it suitable for food packaging," explains Professor Ali Harlin, the head of the CoE Green Chemistry team.

In order to be able to replace, in the future, industrial production that is based on petrochemicals with new production processes based on waste biomass, such new processes must be extremely efficient. "A major challenge is how make the production organisms used in bioprocesses, that is, the microbes, to utilise the sugars of the biomass and to convert them into desired compounds in the most effective manner. This development work calls for multidisciplinary competence ranging from biosciences to engineering."

Explore further: Mantis shrimp stronger than airplanes

add to favorites email to friend print save as pdf

Related Stories

Nature's own chemical plant

Nov 10, 2008

Petroleum is the feedstock for many products in the chemical industry. However, this fossil fuel is becoming increasingly scarce and expensive. Renewable raw materials are an alternative. But can the likes of bioethanol be ...

Chemicals and biofuel from wood biomass

Dec 19, 2011

(PhysOrg.com) -- A method developed at Aalto University in Finland makes it possible to use microbes to produce butanol suitable for biofuel and other industrial chemicals from wood biomass. Butanol is particularly ...

Microbes produce fuels directly from biomass

Jan 27, 2010

A collaboration led by researchers with the U.S. Department of Energy's Joint BioEnergy Institute (JBEI) has developed a microbe that can produce an advanced biofuel directly from biomass. Deploying the tools ...

Recommended for you

Mantis shrimp stronger than airplanes

16 hours ago

(Phys.org) —Inspired by the fist-like club of a mantis shrimp, a team of researchers led by University of California, Riverside, in collaboration with University of Southern California and Purdue University, ...

New mineral shows nature's infinite variability

23 hours ago

(Phys.org) —A University of Adelaide mineralogy researcher has discovered a new mineral that is unique in structure and composition among the world's 4,000 known mineral species.

User comments : 0

More news stories

Mantis shrimp stronger than airplanes

(Phys.org) —Inspired by the fist-like club of a mantis shrimp, a team of researchers led by University of California, Riverside, in collaboration with University of Southern California and Purdue University, ...

The anti-inflammatory factory

Russian scientists, in collaboration with their colleagues from Pittsburgh University, have discovered how lipid mediators are produced. The relevant paper was published in Nature Chemistry. Lipid mediators are molecules that p ...

60% of China underground water polluted: report

Sixty percent of underground water in China which is officially monitored is too polluted to drink directly, state media have reported, underlining the country's grave environmental problems.

Saudi announces 11 new MERS infections

Saudi Arabia on Wednesday announced 11 new cases of MERS, including a 13-year-old child, as its acting health minister vowed to keep the public better informed on the coronavirus.