Dance like a neutrino: Quantum scheme to simulate neutrino oscillations

March 21, 2012

The behaviour of some of the most elusive particles in the known universe can be simulated using three atoms in a lab, researchers at the Centre for Quantum Technologies (CQT) at the National University of Singapore have found.

Principal Investigator Dimitris G. Angelakis and his group members Changsuk Noh and Blas Rodriguez-Lara have devised a scheme that uses the quantum states of three charged ions to simulate the 'oscillations' of neutrinos. The proposal is published in the March issue of .

Neutrinos are pesky things to study: they barely interact with matter and have a very tiny mass. Experiments to study them typically use vast detectors to capture neutrinos produced in the Sun or in . Physicists would like more than such experiments have so far yielded since neutrino behaviour could provide a first glimpse of physics beyond the current Standard Model.

The new technique simulates the phenomenon known as neutrino oscillation: neutrinos flipping between their three types - electron, muon and tau - as they propagate. (No, the simulation won't help determine whether neutrinos travel faster than light, unfortunately.)

In the scheme, the three neutrino types are encoded in the quantum states of three ions, each having two energy levels. The ions are contained in an . Additional lasers set the ions vibrating - the vibrations contribute to making the trapped ions behave mathematically like fast-flying particles - and manipulate the ions' energy states. The team hope to collaborate with experimentalists to realise the quantum simulation.

Neutrino oscillations in standard theory are easily calculated; however, the CQT researchers say the simulator could prove useful in exploring more exotic models of neutrino behaviour. The new scheme could also inspire simulations of other types of particles that come in three families such as quarks, the particles that form protons and neutrons, says Noh, the paper's first author.

Explore further: Discovery of Neutrino Oscillation, Mass Upends Standard Model of Fundamental Forces and Particles

More information: For further details, see "Quantum simulation of neutrino oscillations with trapped ions", New J. Phys. 14, 033028 (2012). iopscience.iop.org/1367-2630/14/3/033028/

A preprint is available at arXiv:1108.0182. arxiv.org/abs/1108.0182

Provided by: Centre for Quantum Technologies at the National University of Singapore

0 shares

Related Stories

CERN neutrino project on target

August 16, 2005

Scientists at CERN announced the completion of the target assembly for the CERN neutrinos to Gran Sasso project, CNGS. On schedule for start-up in May 2006, CNGS will send a beam of neutrinos through the Earth to the Gran ...

Green light for the neutrino beam from Cern to Gran Sasso

September 12, 2006

The delivery of the neutrino beam (Cngs) from Cern and the beginning of a new generation of experiments were officially celebrated today at Infn (Italian National Institute for Nuclear Physics) National Laboratories of Gran ...

New results confirm standard neutrino theory

February 16, 2010

(PhysOrg.com) -- In its search for a better understanding of the mysterious neutrinos, a group of experimenters at DOE’s Fermi National Accelerator Laboratory has announced results that confirm the theory of neutrino oscillations ...

Neutrinos change flavors while crossing Japan

June 15, 2011

By shooting a beam of neutrinos through a small slice of the Earth under Japan, physicists say they've caught the particles changing their stripes in new ways. These observations may one day help explain why the universe ...

Recommended for you

ATLAS and CMS experiments shed light on Higgs properties

September 1, 2015

Three years after the announcement of the discovery of a new particle, the so-called Higgs boson, the ATLAS and CMS Collaborations present for the first time combined measurements of many of its properties, at the third annual ...

Tiny drops of early universe 'perfect' fluid

September 1, 2015

The Relativistic Heavy Ion Collider (RHIC), a particle collider for nuclear physics research at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, smashes large nuclei together at close to the speed of ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Callippo
5 / 5 (1) Mar 21, 2012
Upvoted for link to preprint. The waves of trapped ions are known as a Bloch waves. But what this similarity means? Is it analogy with some deeper meaning - or just an accidental homology?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.