Neptune on tiptoes

Mar 14, 2012
A false-color image of Neptune using data taken by the Voyager satellite. New models constrain for the first time the orbital parameters of Neptune in the early days of the solar system. Credit: NASA

(PhysOrg.com) -- The formation and development of the solar system, long a topic of study for philosophers and scientists, is today often used as a case study for the formation and development of planetary systems around other stars. One probe of the early history of the solar system is the current configuration of the Kuiper Belt, a disc-shaped region of icy objects beyond the orbit of Neptune that stretches between about thirty to fifty astronomical units (AU) from the Sun. Pluto and Eris are the best known Kuiper Belt Objects (KBOs), and there are thought to be as many as one hundred thousand bodies larger in diameter than about 100 km out there.

The spatial distribution of KBOs provides a kind of map for how the orbital evolution of the in our solar system sculpted the disk of small bodies. In particular, it is possible to use KBOs to constrain how the orbits of the giant planets -- especially Neptune -- evolved in the . There are currently two basic models that have enjoyed some success in reproducing KBO orbits, but they are unable to reproduce the observations in one of two basic respects: either they cannot explain the circularity of the orbits, or the fact that one subset of KBOs lies in the plane of the solar system while a second subset has orbits more inclined to the plane.

CfA astronomers Rebekah Dawson and Ruth Murray-Clay, with a colleague, have developed new algorithms and computer codes to address these and other limitations of the current models. In the first of three papers on the topic, they show that they can place robust constraints on the history of Neptune's orbit. For example, they conclude that if Neptune migrated rapidly to its current distance from the Sun, 30AU, then its must have originally been somewhat circular. In particular, its distance from the Sun throughout one of its revolutions would have varied by less than about 30%; for comparison, the value for Pluto today is about 65%. The new results are an important improvement in our understanding not only of how the solar system formed, but how planets might form around other stars.

Explore further: Cosmic illusion revealed: Gravitational lens magnifies supernova

Related Stories

The Edges of the Solar System

May 07, 2010

(PhysOrg.com) -- The solar system does not end abruptly past the planets. Beyond the orbit of Neptune, the outermost planet (it orbits the sun at a distance of 30 AU, where one AU is the average distance of ...

Giant planet ejected from the solar system

Nov 10, 2011

(PhysOrg.com) -- Just as an expert chess player sacrifices a piece to protect the queen, the solar system may have given up a giant planet and spared the Earth, according to an article recently published in ...

Planet Neptune not guilty of harassment

Oct 06, 2010

New research by a University of Victoria PhD student is challenging popular theory about how part of our solar system formed. At today's meeting of the prestigious Division of Planetary Sciences in Pasadena, ...

Picking Planets from Potatoes

Apr 26, 2010

New research indicates that there may be many more dwarf planets similar to Pluto in our solar system than previously thought. Studying these distant objects can help astrobiologists understand the basic properties ...

Asteroid found in gravitational 'dead zone'

Aug 12, 2010

There are places in space where the gravitational tug between a planet and the Sun balance out, allowing other smaller bodies to remain stable. These places are called Lagrangian points. So-called Trojan asteroids ...

Recommended for you

Professional and amateur astronomers join forces

12 hours ago

(Phys.org) —Long before the term "citizen science" was coined, the field of astronomy has benefited from countless men and women who study the sky in their spare time. These amateur astronomers devote hours ...

A star's early chemistry shapes life-friendly atmospheres

Apr 23, 2014

Born in a disc of gas and rubble, planets eventually come together as larger and larger pieces of dust and rock stick together. They may be hundreds of light-years away from us, but astronomers can nevertheless ...

User comments : 0

More news stories

Habitable exoplanets are bad news for humanity

Last week, scientists announced the discovery of Kepler-186f, a planet 492 light years away in the Cygnus constellation. Kepler-186f is special because it marks the first planet almost exactly the same size as Earth ...

Professional and amateur astronomers join forces

(Phys.org) —Long before the term "citizen science" was coined, the field of astronomy has benefited from countless men and women who study the sky in their spare time. These amateur astronomers devote hours ...

Kazakh satellite to be launched into orbit

Kazakhstan's first-ever Earth observation satellite is to be fired into orbit next week from the European spaceport in Kourou in French Guiana, launch company Arianespace said.

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...