Nanotube technology leading to fast, lower-cost medical diagnostics

March 9, 2012
Nanotube sensor

( -- Researchers at Oregon State University have tapped into the extraordinary power of carbon “nanotubes” to increase the speed of biological sensors, a technology that might one day allow a doctor to routinely perform lab tests in minutes, speeding diagnosis and treatment while reducing costs.

The new findings have almost tripled the speed of prototype nano-biosensors, and should find applications not only in medicine but in toxicology, environmental monitoring, new drug development and other fields.

The research was just reported in Lab on a Chip, a professional journal. More refinements are necessary before the systems are ready for commercial production, scientists say, but they hold great potential.

“With these types of sensors, it should be possible to do many medical lab tests in minutes, allowing the doctor to make a diagnosis during a single office visit,” said Ethan Minot, an OSU assistant professor of physics. “Many existing tests take days, cost quite a bit and require trained laboratory technicians.

“This approach should accomplish the same thing with a hand-held sensor, and might cut the cost of an existing $50 lab test to about $1,” he said.

The key to the new technology, the researchers say, is the unusual capability of carbon nanotubes. An outgrowth of nanotechnology, which deals with extraordinarily small particles near the molecular level, these nanotubes are long, hollow structures that have unique mechanical, optical and electronic properties, and are finding many applications.

In this case, carbon nanotubes can be used to detect a protein on the surface of a sensor. The change their electrical resistance when a protein lands on them, and the extent of this change can be measured to determine the presence of a particular protein – such as serum and ductal protein biomarkers that may be indicators of breast cancer.

The newest advance was the creation of a way to keep proteins from sticking to other surfaces, like fluid sticking to the wall of a pipe. By finding a way to essentially “grease the pipe,” OSU researchers were able to speed the sensing process by 2.5 times.

Further work is needed to improve the selective binding of proteins, the scientists said, before it is ready to develop into commercial biosensors.

“Electronic detection of blood-borne biomarker proteins offers the exciting possibility of point-of-care medical diagnostics,” the researchers wrote in their study. “Ideally such electronic biosensor devices would be low-cost and would quantify multiple biomarkers within a few minutes.”

This work was a collaboration of researchers in the OSU Department of Physics, Department of Chemistry, and the University of California at Santa Barbara. A co-author was Vincent Remcho, professor and interim dean of the OSU College of Science, and a national expert in new biosensing technology.

The research was supported by the U.S. Army Research Laboratory through the Oregon Nanoscience and Microtechnologies Institute.

Explore further: Detecting cancer with the prick of a finger (w/ Video)

Related Stories

New 'nanobead' approach could revolutionize sensor technology

April 26, 2011

Researchers at Oregon State University have found a way to use magnetic "nanobeads" to help detect chemical and biological agents, with possible applications in everything from bioterrorism to medical diagnostics, environmental ...

Shining light on the elusive carbon nanotube

October 20, 2011

Michael Blades shakes a small bottle of liquid and watches as tiny black specks swirl around. Each speck represents a cluster of millions of carbon nanotubes (CNTs).

New biosensor benefits from melding of carbon nanotubes, DNA

November 15, 2011

Purdue University scientists have developed a method for stacking synthetic DNA and carbon nanotubes onto a biosensor electrode, a development that may lead to more accurate measurements for research related to diabetes and ...

NDSU nano research could impact flexible electronic devices

February 13, 2012

A discovery by a research team at NDSU and the National Institute of Standards and Technology shows the flexibility and durability of carbon nanotube films and coatings are intimately linked to their electronic properties. ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 09, 2012
Don't expect to see the savings on your medical bills from the doctor or ER. In fact, one should anticipate that the price to the end-user will go up, as they'll surely find an excuse to charge you more for this "life saving" technology.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.