Nano rescues skin: Shrimp shell nanotech for wound healing and anti-aging face cream

Mar 16, 2012

Nanoparticles containing chitosan have been shown to have effective antimicrobial activity against Staphylococcus saprophyticus and Escherichia coli. The materials could be used as a protective wound-healing material to avoid opportunistic infection as well as working to facilitate wound healing.

Chitosan is a natural, non-toxic and biodegradable, polysaccharide readily obtained from chitin, the main component of the shells of shrimp, lobster and the beak of the octopus and squid. Its is well known and has been exploited in dentistry to prevent caries and as preservative applications in food packaging. It has even been tested as an additive for antimicrobial textiles used in clothing for healthcare and other workers.

Now, Mihaela Leonida of Fairleigh Dickinson University, in Teaneck, New Jersey and colleagues writing in the International Journal of Nano and Biomaterials describe how they have prepared nanoparticles of chitosan that could have potential in preventing infection in wounds as well as enhancing the wound-healing process itself by stimulating skin cell growth.

The team made their chitosan nanoparticles (CNP) using an ionic gelation process with sodium tripolyphosphate. This process involves the formation of bonds between polymers strands, a so-called cross-linking process. Conducted in these conditions it precludes the need for complex preparative chemistry or toxic solvents. CNP can also be made in the presence of copper and , known antimicrobial agents. The researchers' preliminary tests show the composite materials to have enhanced activity against two representative types of bacteria.

Understanding the mechanism of inhibition of bacteria by these particles may lead to the preparation of more effective . The team has also demonstrated that the CNP have skin regenerative properties in tests on skin cell fibroblasts and , in the laboratory, which might even have implications for anti-aging skin care products.

Explore further: Understanding the source of extra-large capacities in promising Li-ion battery electrodes

add to favorites email to friend print save as pdf

Related Stories

New silver nanoparticle skin gel for healing burns

Jul 22, 2009

Scientists in India are reporting successful laboratory tests of a new and potentially safer alternative to silver-based gels applied to the skin of burn patients to treat infections. With names like silver ...

Artificial skin system can heal wounds

Dec 20, 2007

A new study in Artificial Organs tested the effects of a wound dressing created with hair follicular cells. The findings reveal that skin substitutes using living hair cells can increase wound healing.

Recommended for you

Tough foam from tiny sheets

3 hours ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0