How muscle cells seal their membranes

Mar 14, 2012
Repair of the plasma membrane of a cell: for the first time, researchers have observed the relevant repair mechanisms in zebrafish. Credit: Institute of Toxicology and Genetics, KIT

Every cell is enclosed by a thin double layer of lipids that separates the distinct internal environment of the cell from the extracellular space. Damage to this lipid bilayer, also referred to as plasma membrane, disturbs the cellular functions and may lead to the death of the cell. For example, downhill walking tears many little holes into the plasma membranes of the muscle cells in our legs. To prevent irreparable damage, muscle cells have efficient systems to seal these holes again. Researchers at Karlsruhe Institute of Technology (KIT) and Heidelberg University have succeeded for the first time in observing membrane repair in real-time in a living organism.

The results were published in the recent issue of the journal Developmental Cell. Using a novel high-resolution imaging method, Prof. Uwe Strähle and Dr. Urmas Roostalu for the first time observed membrane repair in real time in a living animal. They tagged repair proteins with fluorescent proteins in muscle of the transparent zebrafish larvae. With a laser, the researchers burned tiny holes into the plasma membrane of and followed the repair of the holes under the microscope. They showed that membrane vesicles together with two proteins Dysferlin and Annexin A6 rapidly form a repair patch. Other Annexins accumulate subsequently on the injured membrane. These studies by Karlsruhe and Heidelberg researchers suggest that the cell assembles a multilayered repair patch from the inside that seals off the cell's interior from the extracellular environment. Moreover, it was found that there is a specialized membrane area that supplies rapidly the membrane that is needed for sealing the hole.

This animal model for membrane repair will contribute to the identification of new proteins in this sealing process and will help elucidate the underlying mechanisms. The results may contribute to the development of therapies for human myopathies and open up new possibilities in biotechnology.

Explore further: Fighting bacteria—with viruses

More information: Urmas Roostalu, Uwe Strähle: In Vivo Imaging of Molecular Interactions at Damaged Sarcolemma; Developmental Cell, 13 March 2012, Volume 22, Issue 3. www.cell.com/developmental-cell/current

add to favorites email to friend print save as pdf

Related Stories

Faulty cell membrane repair causes heart disease

Jul 03, 2007

During vigorous exercise, heart muscle cells take a beating. In fact, some of those cells rupture, and if not for a repair process capable of resealing cell membranes, those cells would die and cause heart damage (cardiomyopathy).

Discovery Links Proteins Necessary to Repair Membranes

Jun 11, 2009

(PhysOrg.com) -- Researchers at UMDNJ-Robert Wood Johnson Medical School are a step closer to treating, and perhaps preventing, muscle damage caused by disease and aging. In their study, published in the June issue of Journal of ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0