Researchers engineer molecular magnets to act as long-lived qubits

Mar 21, 2012 by Lisa Zyga feature
Chemical structure of a molecular magnet. Image credit: C.J. Wedge, et al. ©2012 American Physical Society

(PhysOrg.com) -- Some physicists today are investigating the possibility of using molecular magnets as information storage units in future quantum computers. Molecular magnets are molecules whose magnetic moments prefer to lie along a particular axis with respect to the molecular structure. They have electron spin structures that can be magnetically tuned to more than one state and, at low temperatures, can retain this state even in the absence of a magnetic field, potentially allowing them to store information.

Now a team of researchers from the UK have demonstrated that the phase of quantum mechanical superpositions between the can last for more than 15 microseconds, allowing their spin states to be repeatedly switched before they lose their information through decoherence. This finding adds to the evidence that molecular magnets may be useful as qubits, the components of a quantum computer.

The researchers, C.J. Wedge, et al., from the University of Oxford and the University of Manchester, have published their study on how to chemically engineer molecular qubits to increase their phase memory times in a recent issue of . Previously, the researchers achieved a phase memory time of 3.8 microseconds, and studies of other molecular magnet systems have yielded times on the 1 microsecond

“Phase memory time and coherence time are very similar concepts,” coauthor Arzhang Ardavan of the University of Oxford told PhysOrg.com. “[Long phase memory time] means that it is possible to manipulate the qubit many times before the quantum information is lost. That is the greatest significance, but we were also pleased that it was possible to control the molecular structures precisely so as to determine the various decoherence mechanisms and to reduce them as far as we were able.”

In their study, the researchers focused on Cr7Ni molecular magnets, which they had previously shown to have  coherence times that greatly exceed the 10 nanoseconds needed for single-qubit manipulations. Here, they have taken the next steps and investigated the specific sources of the molecular magnet's decoherence (nuclear spin diffusion and spectral diffusion), as well as how to optimize the structures to delay decoherence as long as possible.

To do this, the researchers compared different Cr7Ni structures by changing two key components, certain cations and ligands. They specifically investigated how well the different structures retained their spin states at low temperatures, as measured by the structures' phase-coherence relaxation time. The researchers found that optimally engineered Cr7Ni molecular magnets can have phase memory times exceeding 15 microseconds, which is several orders of magnitude higher than the time required for single-qubit manipulations, and significantly longer than previous demonstrations.

The researchers predict that the results will lead to the ability to manipulate quantum states within molecular magnet clusters. They plan to further investigate ways to manipulate molecular magnets in the future.

“We will examine various possibilities,” Ardavan said. “Our collaborators who work on the chemistry of these molecules are able to synthesize structures incorporating several coupled molecular magnets. We will work on simple multi-qubit algorithms using these kinds of molecules.

“Recently, it was proposed theoretically that electric fields could be used to manipulate the magnetic states of molecular magnets,” he added. “We are examining these possibilities experimentally.”

Explore further: New insights found in black hole collisions

More information: C.J. Wedge, et al. “Chemical Engineering of Molecular Qubits.” PRL 108, 107204 (2012). DOI: 10.1103/PhysRevLett.108.107204

4.8 /5 (14 votes)
add to favorites email to friend print save as pdf

Related Stories

Better control of building blocks for quantum computer

Dec 23, 2010

Dutch scientists from the Kavli Institute of Nanoscience at Delft University of Technology and Eindhoven University of Technology have succeeded in controlling the building blocks of a future super-fast quantum ...

Recommended for you

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.