Development of a new method for the boron-doping of two dimensional carbon materials

Mar 22, 2012

Kyoto University researchers have developed a new method for the boron-doping of two dimensional carbon materials, which is expected to be a promising approach towards the development of highly efficient electron transporting materials for organic electronics.

A crucial issue in the field of is the development of efficient electron transporting materials. The recent development of hole-transporting materials in the field of in organic photovoltaics has resulted in an improvement of the light-to-electricity to 10%, even though the electron-transporting materials have been limited almost to fullerene derivatives. The development of new electron-transporting materials is therefore a key step for the development of organic with significantly increased light-to-electricity conversion efficiencies. A promising molecular design approach for novel electron-transporting materials is the incorporation of (boron-doping) into two dimensional carbon networks (Fig.1). However, in order to successfully implement the concept of "boron-doping" into the development of these materials, the crucial problem of stabilizing the resulting boron-containing has to be overcome.

The research group proposed a new concept for the kinetic stabilization of boron-containing materials based on "structural constraint" (Fig.2). They have developed an effective synthetic method for the synthesis of model compounds and showed that a series of corresponding boron-containing revealed high electron accepting abilities as well as high stability towards air and heat. These results demonstrate a new paradigm for the kinetic stabilization of boron-containing two dimensional carbon polycyclic skeletons in the absence of bulky aryl groups. These results should furthermore allow the development of a new class of fascinating 2D carbon materials with boron as the key element. The application of this method to boron-embedded graphene, low molecular weight polycyclic carbon materials, as well as fullerenes and carbon nanotubes would lead to the development of excellent electron-transporting materials that can realize higher light-to-electricity conversion efficiencies in organic photovoltaics.

Explore further: The latest fashion: Graphene edges can be tailor-made

More information: "Planarized Triarylboranes: Stabilization by Structural Constraint and Their Plane-to-Bowl Conversion"
Zhiguo Zhou, et al. Planarized Triarylboranes: Stabilization by Structural Constraint and Their Plane-to-Bowl Conversion. J. Am. Chem. Soc., Article ASAP Publication Date (Web): February 28, 2012 DOI:10.1021/ja211944q

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Researchers use oxides to flip graphene conductivity

1 hour ago

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

7 hours ago

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.