Massive ice avalanches on Iapetus

Mar 22, 2012 By Nancy Atkinson, Universe Today
Long-runout landslides on Iapetus: A) Malun crater blocky landslide; B) Multiple lobate landslide in Engelier Basin; C) Lobate landslide in Gerin Basin. Credit: McKinnon et. al, LPSC, 2012.

We've seen avalanches on Mars, but now scientists have found avalanches taking place on an unlikely place in our solar system: Saturn’s walnut-shaped, two-toned moon Iapetus. And these aren’t just run-of-the-mill avalanches: they are huge inundations of debris. These events are specifically known as long-runout landslides — debris flows that have traveled unusually long distances. Just how these avalanches are occurring is somewhat of a mystery, according to Bill McKinnon from Washington University in St. Louis.

“This is really about the mystery of long-runout landslides, and no one really knows for sure what causes them,” said McKinnon, speaking at the Lunar and Planetary Science Conference this week.

These or landslides certainly have their Earthly counterparts and, as noted, similar events are found on Mars, where they are especially associated with the steep canyon walls of the Valles Marineris system. However, the large mass movements on Iapetus in the form of long-runout landslides are less common.

McKinnon said the amount of material that has been moved in all the avalanches on Iapetus that he and his team have found exceeds all the material moved in known Martian landslides (in published data), even though Mars is much bigger than Iapaetus.

“The mechanics of long-runout landslides are poorly understood, and mechanisms proposed for friction reduction are so numerous I can’t fit them all on one Powerpoint slide,” McKinnon said during his talk. Possible explanations include water (such as released groundwater), wet or saturated soil, , trapped or compressed air, and acoustic fluidization.

On Iapetus there is obviously no water or atmosphere to create conducive conditions for avalanches. But McKinnon and his team have identified over two dozen avalanche events as seen in images from the Cassini spacecraft.

Many of the landslides are seen from crater and basin walls and steep scarps. McKinnon and his team have found two types of avalanches: ‘blocky’ with rough-looking debris and smoother lobate landslides. They also see evidence that over time, multiple avalanches have likely occurred in the same location, so Iapetus must have a long history of mass wasting and landslides.

So, what allows for the huge avalanches on Iapetus? McKinnon said ice provides the best answer to that question. The low density of Iapetus indicates that it is mostly composed of ice, with only about 20% of rocky materials.

“There seems to be a necessity for a fluidization or liquid mechanism,” McKinnon said. “If ice is warmed just enough it will become slippery,” reducing the friction and cohesiveness of the crater or basin wall.

What they are seeing, especially in the lobate landslides, is consistent with ‘rheological’ flow similar to molten lava or fluid mudslides.

So, ice rubble within the rocky faces of crater and basin walls are heated just enough – either by flash heating or friction — that the surfaces become slippery. “The energetics are favorable for this mechanism on Iapetus,” McKinnon said.

Iapetus has a very slow rotation, longer than 79 days, and such a slow rotation means that the daily temperature cycle is very long — so long that the dark material can absorb heat from the Sun and warm up. Of course the dark part of Iapetus absorbs more heat than the bright icy material; therefore McKinnon said, this is all fairly enigmatic.

Plus, saying that it “warms up” on Iapetus is a bit of an overstatement. Temperatures on the dark region’s surface are estimated to reach 130 K (-143 °C; -226 °F) at the equator and temperatures in the brighter area only reach about 100 K (-173 °C; -280 °F).

Whatever the mechanisms, the long-runout on are fairly unique when it comes to icy planetary bodies. McKinnon referenced that just two mass movements of modest scale have been detected on Callisto, and there is limited evidence of similar events on Phoebe.

These ice avalanches certainly deserve more investigation on a moon which McKinnon described as having “singularly spectacular topography.”

Explore further: Kazakh satellite to be launched into orbit

More information: Read the paper: Massive Ice Avalanches on Iapetus, and the Mechanism of Friction Reduction in Long-Runout Landslides

add to favorites email to friend print save as pdf

Related Stories

How Iapetus got its ridge

Dec 13, 2010

For centuries, people wondered how the leopard got its spots. The consensus is pretty solid that evolution played a major role.

Cassini Prepares to Fly by Walnut-Shaped Moon

Sep 06, 2007

Cassini will make its only close flyby of Saturn's odd, two-toned, walnut-shaped moon Iapetus on Sept. 10, 2007, at about 1,640 kilometers (1,000 miles) from the surface.

Saturn's Old Moon Iapetus Retains Its Youthful Figure

Jul 17, 2007

Saturn's distinctive moon Iapetus (eye-APP-eh-tuss) is cryogenically frozen in the equivalent of its teenage years. The moon has retained the youthful figure and bulging waistline it sported more than three ...

Saturn's Icy Moon Iapetus

Jan 04, 2005

NASA's Cassini spacecraft successfully flew by Saturn's moon Iapetus at a distance of 123,400 kilometers (76,700 miles) on Friday, Dec. 31. NASA's Deep Space Network tracking station in Goldstone, Calif., received ...

Recommended for you

Kazakh satellite to be launched into orbit

18 hours ago

Kazakhstan's first-ever Earth observation satellite is to be fired into orbit next week from the European spaceport in Kourou in French Guiana, launch company Arianespace said.

Habitable exoplanets are bad news for humanity

20 hours ago

Last week, scientists announced the discovery of Kepler-186f, a planet 492 light years away in the Cygnus constellation. Kepler-186f is special because it marks the first planet almost exactly the same size as Earth ...

First-of-its-kind NASA space-weather project

Apr 23, 2014

A NASA scientist is launching a one-to-two-year pilot project this summer that takes advantage of U.S. high-voltage power transmission lines to measure a phenomenon that has caused widespread power outages ...

User comments : 0

More news stories

Habitable exoplanets are bad news for humanity

Last week, scientists announced the discovery of Kepler-186f, a planet 492 light years away in the Cygnus constellation. Kepler-186f is special because it marks the first planet almost exactly the same size as Earth ...

Professional and amateur astronomers join forces

(Phys.org) —Long before the term "citizen science" was coined, the field of astronomy has benefited from countless men and women who study the sky in their spare time. These amateur astronomers devote hours ...

Google+ boss leaving the company

The executive credited with bringing the Google+ social network to life is leaving the Internet colossus after playing a key role there for nearly eight years.