First step taken to image ultra-fast movements in chemical reactions

March 15, 2012

A team of international researchers have fired ultra-fast shots of light at oxygen, nitrogen and carbon monoxide molecules as part of a development aimed at mapping the astonishingly quick movements of atoms within molecules, as well as the charges that surround them.

The ultra-short that spans only a few hundred attoseconds – an attosecond is equivalent to one quintillionth of a second – was fired in a sample of and could pave the way towards imaging the movement of and their electrons as they undergo a chemical reaction – one of the holy grails of chemistry research.

This latest study has been published today, 16 March, as part of a special issue on attosecond science, in IOP Publishing's Journal of Physics B: Atomic, Molecular and Optical Physics to mark the 10th anniversary of the first ever attosecond laser pulse.

Previous research has been able to probe the structure of molecules using a variety of techniques; however, the inherent challenge is to perform these experiments in systems where changes are rapidly occurring on very small time scales.

The researchers used two lasers in their experiments: the first held the molecule in place whilst the second was fired at it. The second laser operated in the extreme ultra-violet region of the electromagnetic spectrum as this is one of only two regions – x-ray being the other – where the laws of physics allow laser pulses to be produced on an attosecond timescale.

Once the target molecule was in place, short pulses of the laser were fired at in an attempt to dislodge an electron. This process, known as photoionization, allows atoms and molecules to be imaged in unprecedented detail as the ejected electrons carry crucial information about where it came from.

In this experiment, the samples, which existed as a gas, were stable, meaning no reactions were taking place; however, the major goal of the research team is to monitor the electrical and molecular changes, in real-time, that occur as atoms undergo a chemical reaction.

They intend to do this by triggering a reaction with the laser, breaking a chemical bond that holds molecules together, and then using the described technique to image the changes that occur in the molecule as they happen.

Lead author of the study Dr Arnaud Rouzée from the Max-Born-Institute said: "We show that the photoelectron spectra recorded for a small molecule, such as , and contains a wealth of information about electron orbitals and the underlying molecular structure.

"This is a proof-of-principle experiment that electrons ejected within the molecule can be used to monitor ultrafast electronic and atomic motion."

The researchers are from the Max-Born-Institute, FOM-Institute AMOLF and Texas A&M University.

Explore further: Laser pulses control single electrons in complex molecules

More information: "Photoelectron kinetic and angular distributions for the ionization of aligned molecules using a HHG source" A Rouzée et al 2012 J. Phys. B: At. Mol. Opt. Phys. 45 074016.

Related Stories

Laser pulses control single electrons in complex molecules

September 1, 2009

Predatory fish are well aware of the problem: In a swarm of small fish it is hard to isolate prey. A similar situation can be found in the microcosm of atoms and molecules, whose behavior is influenced by "swarms" of electrons. ...

Scientists track electrons in molecules

June 13, 2010

( -- Physicists in Europe have successfully glimpsed the motion of electrons in molecules. The results are a major boon for the research world. Knowing how electrons move within molecules will facilitate observations ...

Scientists make holograms of atoms using electrons

January 6, 2011

( -- While holography is often associated with artistic 3D images, it can also be used for many other purposes. In a new study, scientists have created holograms of atoms using laser-driven electron motion, which ...

Watching electrons in molecules

October 14, 2011

( -- A research group led by ETH Zurich has now, for the first time, visualized the motion of electrons during a chemical reaction. The new findings in the experiment are of fundamental importance for photochemistry ...

Recommended for you

Using optical fiber to generate a two-micron laser

October 9, 2015

Lasers with a wavelength of two microns could move the boundaries of surgery and molecule detection. Researchers at EPFL have managed to generate such lasers using a simple and inexpensive method.

Scientists float new approach to creating computer memory

October 8, 2015

What can skyrmions do for you? These ghostly quantum rings, heretofore glimpsed only under extreme laboratory conditions, just might be the basis for a new type of computer memory that never loses its grip on the data it ...

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.