Honeycombs of magnets could lead to new type of computer processing

Mar 30, 2012
Scientists have taken an important step forward in developing a new material using a honeycomb mesh of nano-sized magnets that could ultimately lead to new types of electronic devices, with greater processing capacity than is currently feasible, in a study published today in the journal Science. Credit: Will Branford, Imperial College London

Scientists have taken an important step forward in developing a new material using nano-sized magnets that could ultimately lead to new types of electronic devices, with greater capacity than is currently feasible, in a study published today in the journal Science.

Many modern data , like hard disk drives, rely on the ability to manipulate the properties of tiny individual magnetic sections, but their overall design is limited by the way these magnetic 'domains' interact when they are close together.

Now, researchers from Imperial College London have demonstrated that a honeycomb pattern of nano-sized magnets, in a material known as spin ice, introduces competition between neighbouring magnets, and reduces the problems caused by these interactions by two-thirds. They have shown that large arrays of these nano-magnets can be used to store computable information. The arrays can then be read by measuring their electrical resistance.

The scientists have so far been able to 'read' and 'write' patterns in the magnetic fields, and a key challenge now is to develop a way to utilise these patterns to perform calculations, and to do so at room temperature. At the moment, they are working with the magnets at temperatures below minus 223oC.

Research author Dr Will Branford and his team have been investigating how to manipulate the magnetic state of nano-structured spin ices using a and how to read their state by measuring their . They found that at low temperatures (below minus 223oC) the magnetic bits act in a collective manner and arrange themselves into patterns. This changes their resistance to an electrical current so that if one is passed through the material, this produces a characteristic measurement that the scientists can identify.

The scientists have so far been able to 'read' and 'write' patterns at room temperature. However, at the moment the collective behaviour is only seen at temperatures below minus 223oC. A key challenge now is to develop a way to utilise these patterns to perform calculations, and to do so at room temperature.

Current technology uses one magnetic domain to store a single bit of information. The new finding suggests that a cluster of many domains could be used to solve a complex computational problem in a single calculation. Computation of this type is known as a neural network, and is more similar to how our brains work than to the way in which traditional computers process information.

Dr Branford, who is an EPSRC Career Acceleration Fellow in the Department of Physics at Imperial College London, said: "Electronics manufacturers are trying all the time to squeeze more data into the same devices, or the same data into a tinier space for handheld devices like smart phones and mobile computers. However, the innate interaction between magnets has so far limited what they can do. In some new types of memory, manufacturers try to avoid the limitations of magnetism by avoiding using magnets altogether, using things like ferroelectric (flash) memory, memristors or antiferromagnets instead. However, these solutions are slow, expensive or hard to read out. Our philosophy is to harness the magnetic interactions, making them work in our favour."

Although today's research represents a key step forward, the researchers say there are many hurdles to overcome before scientists will be able to create prototype devices based on this technique such as developing an algorithm to control the computation. The nature of this algorithm will determine whether the state can be used or if the low temperature is required. However, they are optimistic that if these challenges can be tackled successfully, new technology using magnetic honeycombs might be available in ten to fifteen years.

In experiments, Dr Branford applied an electrical current across a continuous honeycomb mesh, made from cobalt magnetic bars each 1 micrometer long and 100 nanometres wide, and covering an area 100 square micrometers (as pictured). A single unit of the honeycomb mesh is like three bar magnets meeting in the centre of a triangle. There is no way to arrange them without having either two north poles or two south poles touching and repelling each other, this is called a 'frustrated' magnetic system. In a single triangular unit there are six ways to arrange the magnets such that they have exactly the same level of frustration, and as you increase the number of triangular units in the honeycomb, the number of possible arrangements of magnets increases exponentially, increasing the complexity of possible patterns.

Previous studies have shown that external magnetic fields can cause the magnetic domain of each bar to change state. This in turn affects the interaction between that bar and its two neighbouring bars in the honeycomb, and it is this pattern of magnetic states that Dr Branford says could be computer data.

Dr Branford said: "The strong interaction between neighbouring magnets allows us to subtly affect how the patterns form across the honeycomb. This is something we can take advantage of to compute complex problems because many different outcomes are possible, and we can differentiate between them electronically. Our next big challenge is to make an of nano-magnets that can be 'programmed' without using external magnetic fields."

Explore further: It's particle-hunting season! NYU scientists launch Higgs Hunters Project

Related Stories

New material is a breakthrough in magnetism

Apr 12, 2010

(PhysOrg.com) -- Researchers from Imperial College London have created a structure that acts like a single pole of a magnet, a feat that has evaded scientists for decades. The researchers say their new Nature Ph ...

Scientists study a magnetic makeover

Jan 17, 2007

Researchers at the University of Victoria have discovered new lightweight magnets that could be used in making everything from extra-thin magnetic computer memory to ultra-light spacecraft parts. A paper on the study will ...

Recommended for you

Particles, waves and ants

8 hours ago

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Isaacsname
not rated yet Mar 30, 2012
Interesting, reminds me of photonic-crystal fiber.

*rubs unshaven face*
Callippo
1 / 5 (3) Mar 30, 2012
Magnetic bubble memories were hot topic even at the end of 50's already. During last fifty years we got some medial massage regarding the spinotronics and revolution in usage of magnets for computing virtually every year. Every year during last fifty years we got these reports with the same rock-steady regularity like the reports about alleged achievements in hot fusion and similar topics... Sorry, but only imbecile couldn't not learn from it.
sender
not rated yet Mar 31, 2012
Exact same science as this article dated: April 21st, 2010
http://www.physor...841.html

Thanks for regurgitating while commerce stands still.

Apart from computing, superconducting transformers for space apps should be feasible from such a lattice.
Lurker2358
not rated yet Mar 31, 2012
Exact same science as this article dated: April 21st, 2010
http://www.physor...841.html

Thanks for regurgitating while commerce stands still.

Apart from computing, superconducting transformers for space apps should be feasible from such a lattice.


Man, don't kid yourself.

A viable commercial product from this is probably still 20 or 30 years away.

Maybe governments or large R&D firms might find some use for this in astrophysics or weather modeling or some crap like that.

They are 250C away from room temperature, which means you won't be seeing this in commercial or industrial use in your life time, unless somebody discovers freaking unobtainium or some truly exotic physics that high-jacks thermodynamics.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.