Highest honors for quantum computer pioneer

Mar 23, 2012
This is Rainer Blatt, Institute of Experimental Physics, University of Innsbruck, and Institute for Quantum Optics and Quantum Information, Austrian Academy of Science Credit: C. Lackner.

Experimental physicist Rainer Blatt from the Institute for Quantum Optics and Quantum Information (IQOQI) in Innsbruck, Austria, will receive the Stern-Gerlach Medal of the German Physical Society. The medal will be presented by Germany's Research Minister Anette Schavan in Berlin on Tuesday 27 March 2012. It is the most prestigious and important award in the field of experimental physics, awarded by the biggest physics society in the world. Rainer Blatt is the first Austrian scientist given the honor to receive this award.

Rainer Blatt is being recognized for his work in the fields of metrology and with electromagnetically stored ions. In its decision the German Physical Society states that "The experimental demonstration of basic building blocks and algorithms of a quantum computer, teleportation of quantum states of matter, the first realization of quantum bytes and the simulation of have opened up new scientific research fields and paved the way for future quantum technology." The Stern-Gerlach Medal is the highest honor of the German Physical Society in the field of experimental physics and it is made of pure gold.

Pioneer of quantum computer research

A future quantum computer uses the particular nature of , which will make calculations possible that are not feasible in classic data processing. In trailblazing experiments Rainer Blatt showed that trapped ions offer a unique experimental platform to encode, process and measure . All quantum logical operations are realized by a complex series of laser pulses. A well-known example of quantum algorithms is teleportation; Rainer Blatt and his research group succeeded in producing entangled states, which they then used for quantum algorithms. They started by entangling two ions, in 2008 they entangled eight ions in one quantum byte and now they have pushed the record to 14 entangled ions.

In another experiment Rainer Blatt and his team of scientists showed that trapped ions can also be used in a digital quantum simulator. This research area is based on the propositions of Richard Feynman, who suggested simulating states and dynamics in a highly controlled quantum system to better understand complex many-body systems. If scientists can tailor the of a many-body system, this could be used for applications such as the atomic clock which uses entanglement of ions to achieve an even higher grade of precision.

Inspiration for others

The work done by Rainer Blatt's research group at the Institute for Experimental Physics of the University of Innsbruck and the Institute for and Quantum Information (IQOQI) of the Austrian Academy of Sciences has inspired researchers beyond the field of Quantum Optics and Quantum Information influencing research in the fields of ultracold atoms and condensed matter physics. "His work provides the basis for future technological application of quantum information," writes the German Physical Society.

The award ceremony will take place during the 76th Annual Meeting of the Society in Berlin, which will be attended by over 6,000 physicists from all over the world. The German Physical Society, whose tradition dates back to 1845, is the oldest national physics society in the world, and with 61,000 members, also the biggest.

Explore further: A tool for measuring atomic properties at the quantum limit

More information: A detailed CV of Prof. Rainer Blatt can be found at iqoqi.at/people&v=i&i=290995

Provided by University of Innsbruck

5 /5 (7 votes)
add to favorites email to friend print save as pdf

Related Stories

Quantum physics: Flavors of entanglement

Sep 27, 2010

The entanglement of quantum objects can take surprising forms. Quantum physicists at the University of Innsbruck have investigated several flavors of entanglement in four trapped ions and report their results ...

Digital quantum simulator realized

Sep 01, 2011

(PhysOrg.com) -- The physicists of the University of Innsbruck and the Institute for Quantum Optics and Quantum Information (IQOQI) in Innsbruck have come considerably closer to their goal to investigate complex ...

Quantum measurements: Common sense is not enough

Jul 22, 2009

(PhysOrg.com) -- In comparison to classical physics, quantum physics predicts that the properties of a quantum mechanical system depend on the measurement context, i.e. whether or not other system measurements ...

Recommended for you

Fluid mechanics suggests alternative to quantum orthodoxy

Sep 12, 2014

The central mystery of quantum mechanics is that small chunks of matter sometimes seem to behave like particles, sometimes like waves. For most of the past century, the prevailing explanation of this conundrum ...

The sound of an atom has been captured

Sep 11, 2014

Researchers at Chalmers University of Technology are first to show the use of sound to communicate with an artificial atom. They can thereby demonstrate phenomena from quantum physics with sound taking on ...

The quantum revolution is a step closer

Sep 11, 2014

A new way to run a quantum algorithm using much simpler methods than previously thought has been discovered by a team of researchers at the University of Bristol. These findings could dramatically bring ...

User comments : 0