HELIOS makes silicon breakthrough

Mar 30, 2012
HELIOS makes silicon breakthrough

Researchers in Europe have succeeded in presenting an integrated tuneable transmitter on silicon - the first time this has ever happened. This results are an outcome of the HELIOS ('Photonics electronics functional integration on complementary metal oxide-semiconductor, CMOS') project. The team presented the results at the recent Optical Fiber Communication conference in Los Angeles.

Experts from the Electronics and Information Technology Laboratory of the French Atomic Energy Commission (CEA-Leti) and III-V lab, a joint lab of Bell Labs France, in cooperation with Thales Research and Technology in the United Kingdom, say the tuneable laser source integrated on is a groundbreaking achievement in efforts to secure fully integrated transceivers. Researchers at Ghent University and the Interuniversity Microelectronics Centre (IMEC) in Belgium, and the University of Surrey in the United Kingdom, who designed the modulator, supported the research.

The group from CEA-Leti and III-V lab also demonstrated single wavelength tuneable lasers, with a 21 mA threshold at 20o Celsius, a 45 nm tuning range and a side mode suppression ratio larger than 40 dB over the tuning range.

The researchers say silicon photonics is a powerful technology. Silicon photonics have the potential to bring the large-scale manufacturing of CMOS to photonic devices that are not cheap because the technology is missing. Another challenge to silicon photonics is the lack of optical sources on silicon, the base material on CMOSs, according to the researchers.

"We can overcome this problem by bonding III-V material, necessary for active light sources, onto a silicon wafer and then co-processing the two, thus accomplishing two things at once," says Martin Zirngibl, Bell Labs Physical Technologies Research leader. "Traditional CMOS processing is still used in the process, while at the same time we now can integrate active light sources directly onto silicon."

Commenting on the results, CEA-Leti France Photonics Program Manager, Laurent Fulbert, says: "We are proud to jointly present with III-V lab the results of the integrated transmitter and the tuneable laser. The ability to integrate a tuneable laser, a modulator and passive waveguides on silicon paves the way of further developments on integrated transceivers that can address several application needs in metropolitan and access networks, servers, data centres, high-performance computers as well as optical interconnects at rack-level and board-level. We are pleased to bring our contribution to these state-of-the-art results which can truly revolutionise optical communications."

Explore further: Physicists develop miniature Raman laser sensors for single nanoparticle detection

More information: www.helios-project.eu

add to favorites email to friend print save as pdf

Related Stories

EPIC: Building the Perfect Chip

Feb 07, 2008

Three years ago a team from Bell Labs took on a very daunting challenge – put an optical networking system on a commercially manufactured silicon chip, load it with a smorgasbord of sophisticated opto-electronic devices ...

Recommended for you

Researchers develop powerful, silicon-based laser

23 hours ago

A silicon-based laser that lases up to a record 111°C, with a threshold current density of 200 A/cm2 and an output power exceeding 100 mW at room temperature, has been demonstrated by collaborating researcher ...

Predicting landslides with light

23 hours ago

Optical fiber sensors are used around the world to monitor the condition of difficult-to-access segments of infrastructure—such as the underbellies of bridges, the exterior walls of tunnels, the feet of dams, long pipelines ...

Studies in laser physics help understand rogue waves

Sep 29, 2014

(Phys.org) —University of Auckland physicist Dr Miro Erkintalo is part of an international team investigating how lasers and optical fibres can be used to understand freakishly large waves on the ocean.

User comments : 0