Graphene: Potential for modelling cell membrane systems

Mar 22, 2012 By Adarsh Sandhu
Graphene: Potential for modelling cell membrane systems
Fig.1. (A) Scanning electron microscope image of GO flakes dropped onto a SiO2/Si substrate. (B) Atomic force microscope topography and (C) structural model of DOPC bilayer membranes on GO/SiO2/Si. Credit: Toyohashi University of Technology

At Toyohashi University of Technology the intriguing properties of graphene—a single atomic-layer of carbon—such as high electron mobility and fluorescence quenching are being exploited for biosensing and analysis of nucleotides, peptides, and proteins.

Graphene could also play an important role in the modelling of cell membranes. For example, the lipid bilayer is the fundamental structure of cell membranes, and the structure and dynamic of bilayer membranes govern the transport of materials and information in and out of cells.

Ryugo Tero and his colleagues in the Graphene Research Group at Toyohashi University of Technology have established a new procedure to fabricate artificial planar lipid membranes on graphene oxide (GO) and reduced graphene oxide (r-GO) as a means of detecting biomolecules such as lipids and proteins on and inside lipid bilayers.

An aqueous solution of GO was prepared by chemical exfoliation and dropped onto a thermally oxidized and cleaned SiO2/Si substrate (Fig.1A). The resulting GO/SiO2/Si was incubated in a vesicle suspension of phospholipid (dioleoylphosphatidylcholine: DOPC). Subsequent observation with an atomic force fluorescence microscopy (Fig.1B) and revealed the presence of two planar DOPC bilayer membranes stacked on GO with the assistance of calcium ion (5 mM), and that the DOPC bilayers on GO were fluid and continuous with the surrounding DOPC bilayers on the bare SiO2 surfaces (Fig. 1C).

Lipid bilayer/monolayer stacking structures were obtained on hydrophobic r-GO, which was produced by reducing GO with hydrazine vapour. Artificial lipid bilayers on and its derivatives could be a new cell membrane model system for the researche on fundamental processes in cell membrane reactions.

These results will be a part of the presentation in MRS (Material Research Society) Spring Meeting 2012 at San Francisco on April 12 (Symposium EE: New Functional Nanocarbon Devices).

Explore further: Carbon nanoballs can greatly contribute to sustainable energy supply

More information: Y. Okamoto, et al. 'Fabrication of Supported Lipid Bilayer on Graphene Oxide," IOP Journal of Physics: Conference Series (in press).

K. Tsuzuki, et al. 'Reduced Graphene Oxide as the Support for Lipid Bilayer Membrane,' IOP Journal of Physics: Conference Series (in press).

Provided by Toyohashi University of Technology

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Scientists produce graphene using microorganisms

Mar 22, 2012

The Graphene Research Group at Toyohashi University of Technology (Japan) reports on the synthesis of graphene by reducing graphene oxide using microorganisms extracted from a local river.

Microcantilevers are masters of measurement

Jun 01, 2011

(PhysOrg.com) -- Devices that look like tiny diving boards are a launching platform for research that could improve detergents and advance understanding of disease.

Recommended for you

Demystifying nanocrystal solar cells

10 hours ago

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.