Graphene-based optical modulators poised to break speed limits in digital communications

March 1, 2012

In yet another astounding application of the "wonder material" graphene, scientists at the University of California, Berkeley discovered that it makes an excellent active media for optical modulators. Graphene-based modulators are expected to significantly enhance ultrafast optical communication and computing. team will report on their findings at the Optical Fiber Communication Conference and Exhibition/National Fiber Optic Engineers Conference (OFC/NFOEC) taking place next week in Los Angeles.

Modulators play a vital role in communications due to their switching ability, because this is what controls the speed that can travel through networks. As the speed of data pulses sent out increases, it means that greater volumes of information can be transmitted.

"We demonstrated a graphene-based with a broad optical bandwidth (1.35-1.6 µm), a small device footprint (25 µm2), and high operational speed (1.2 GHz at 3dB) under ambient conditions—all of which are essential for optical interconnects for future integrated optoelectronic systems," says Ming Liu, a post-doctoral researcher working at UC Berkeley's NSF Nanoscale Science and Engineering Center. "The modulation efficiency of a single layer of a hexagonal carbon atom is already comparable to, if not better than, traditional semiconductor materials, which are orders of magnitude larger in active volume."

Looking into future applications, graphene-based modulators could be very compact and potentially perform at speeds up to 10 times faster than today's technology allows. They may someday enable consumers to stream full-length, high-definition, 3-D movies onto their smartphones within mere seconds.

Explore further: Technological breakthrough in Silicon Photonics: Intel Silicon-based Optical Modulator Could Run Faster Than 1GHz

More information: Liu's talk, "Graphene-based optical modulators," takes place Tuesday, March 6 at 3:30 p.m. in the Los Angeles Convention Center.

Related Stories

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.