GOODS-Herschel reveals gas mass role in creating fireworks versus beacons of star formation

Mar 27, 2012
False colour image from the Herschel Space Observatory of starburst galaxy GN20, 1.5 billion years after the Big Bang, or more than 12 billion years back into the history of the Universe. This is a ''firework'', with an extreme, but short-lived nevertheless, star-forming episode, believed to be triggered by a major merger. Credit: ESA/GOODS-Herschel Team and R. Gobat

(PhysOrg.com) -- A study of galaxies in the deepest far-infrared image of the sky, obtained by the Herschel Space Observatory, highlights the two contrasting ways that stars formed in galaxies up to 12 billion years ago. Dr. Georgios Magdis will present the results at the National Astronomy Meeting in Manchester.

Recent results from Herschel show that gas-rich galaxies in the early universe were able to create stars at an intense rate. In the nearby universe, we only see such high rates of when galaxies collide. However, the Herschel data shows that while star-formation in some galaxies in the were triggered by mergers, the majority of star forming galaxies were not undergoing interactions. The formation was driven by the amount of gas present.

Magdis and his colleagues have now carried out a detailed study of an example of a normal and a merging galaxy observed as part of the Great Observatories Origins Deep Survey (GOODS) Herschel programme. GOODS is led by David Elbaz of CEA/Saclay, France.

"The aim of this study was to estimate the amount of gas that the galaxies contained and understand how that affected the way that they formed stars. In contrast to what we see in the , it was only in the minority of the intensively star forming galaxies that star formation activity was triggered by merging of galaxies," said Magdis, of the University of Oxford.

"The dominant population had very large that could induce and maintain a high of stars without the need of galaxy 'cannibalism'. Such episodes of star-formation naturally resulted from steady, long lasting accretion of gas, forming these 'cosmic beacons' of our Universe. However, our study shows that the other population – merging galaxies – had ten times less gas, but the interactions made them much more efficient in converting gas into stars. These galaxies experienced an extreme but nevertheless short-lived firework of star formation," said Magdis.

The team selected the galaxy BzK-21000, observed approximately 4 billion years after the Big Bang, as an example of the 'normal' gas-rich galaxy and GN20, a member of a rich proto-cluster of galaxies observed approximately 1.5 billion years after the Big Bang, as an example of an interacting galaxy. The mass of the gas in the galaxies cannot be measured directly as it mostly consists of hydrogen, which is difficult to detect. Instead the team measured levels of dust and carbon monoxide and, assuming that there are constant ratios with the mass of hydrogen present, used these to estimate the amount of gas present. The measurements were supplemented by radio detections from the Very Large Array (VLA) to constrain the uncertainties in the estimates for the mass of dust.

"This result comes to highlight the minor contribution of mergers in the history of star formation activity and point towards a more quite, smooth and ‘independent’ evolution of galaxies throughout the cosmic time," said Magdis.

Explore further: Astronomers release most detailed catalogue ever made of the visible Milky Way

add to favorites email to friend print save as pdf

Related Stories

Herschel paints new story of galaxy evolution

Sep 13, 2011

(PhysOrg.com) -- ESA's Herschel infrared space observatory has discovered that galaxies do not need to collide with each other to drive vigorous star birth. The finding overturns this long-held assumption ...

The star factory: observing Arp 220

Feb 18, 2012

Using the Herschel Space Observatory, Wilson's group has found Arp 220 to have large amounts of very warm molecular hydrogen gas, a surprising find that implies molecular hydrogen is the dominant coolant in the high-temperature ...

Survey Reveals Building Block Process For Biggest Galaxies

Apr 12, 2006

A new study of the universe's most massive galaxy clusters shows how mergers play a critical role in their evolution. Astronomers used the twin Gemini Observatory instruments in Hawaii and Chile, and the Hubble Space Telescope ...

Raging storms sweep away galactic gas

May 09, 2011

(PhysOrg.com) -- ESA's Herschel infrared space observatory has detected raging winds of molecular gas streaming away from galaxies. Suspected for years, these outflows may have the power to strip galaxies ...

Recommended for you

The entropy of black holes

Sep 12, 2014

Yesterday I talked about black hole thermodynamics, specifically how you can write the laws of thermodynamics as laws about black holes. Central to the idea of thermodynamics is the property of entropy, which c ...

Modified theory of dark matter

Sep 12, 2014

Dark matter is an aspect of the universe we still don't fully understand. We have lots of evidence pointing to its existence (as I outlined in a series of posts a while back), and the best evidence we have point ...

Gaia discovers its first supernova

Sep 12, 2014

(Phys.org) —While scanning the sky to measure the positions and movements of stars in our Galaxy, Gaia has discovered its first stellar explosion in another galaxy far, far away.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Tuxford
1 / 5 (2) Apr 13, 2012
Nearby star-forming galaxies are incorrectly interpreted as colliding; they are generally growing from within from outbursts of new matter from their extremely active cores. Instead, LaViolette's 'continuous creation' model shows that these parent galaxies spawn new nearby galaxies, that are wrongly assumed to be colliding.

http://phys.org/n...ars.html

In the early universe it is likely more difficult to detect the 'merger' configurations. Furthermore, the younger galaxies had less developed 'merger' configurations. Thus they found fewer 'merger' configurations in the early universe. And too their surprise, there was too little gas to explain the star formation rates.

Once again, this observation fits LaViolette's model. Astronomers have it backwards. Until they turn around, they will remain confused.