Researchers take first-ever measurement of auroral turbulence using a nanosatellite radar receiver

Mar 22, 2012

Researchers from SRI International and the University of Michigan have taken the first-ever measurement of naturally occurring auroral turbulence recorded using a nanosatellite radar receiver. The research was done with support from the National Science Foundation (NSF) and NASA's Educational Launch of Nanosatellites (ELaNa) Initiative.

The distinctive echoes recorded on March 8 were taken with the Radio Aurora Explorer (RAX) CubeSat. The RAX nanonsatellite measured turbulence over Fairbanks, Alaska that was a direct result of a triggered by the largest solar flare in the past five years. The Earth's high latitude ionosphere, a region of the upper atmosphere associated with solar-driven aurora or "northern lights," becomes highly unstable when large currents flow during geomagnetic storms. RAX was specifically designed by SRI and the University of Michigan to measure this auroral turbulence from an orbital vantage point inaccessible to traditional ground-based radars.

"The RAX radar echo discovery has convincingly proved that miniature satellites, beyond their role as teaching tools, can provide high caliber measurements for fundamental space weather research," said Therese Moretto Jorgensen, Ph.D., Geospace program director in the Division of Atmospheric and Geospace Sciences at the National Science Foundation.

The project's mission was to use small satellites called CubeSats to remotely explore formation of charged particle filaments created in response to intense electrical currents in space. These plasma structures, a form of turbulence called field-aligned irregularities (FAIs), can distort communication and navigation signals such as global positioning systems (GPS). During the recent , RAX measured FAI echoes using the Poker Flat Incoherent Scatter Radar (PFISR), an NSF research radar operated by SRI.

"The recently collected radar echoes allow us to determine the root cause and to possibly predict future disturbances in the auroral ionosphere – disturbances that can severely compromise communication and GPS satellites," said Hasan Bahcivan, Ph.D., a research physicist in SRI's Center for Geospace Studies, and principal investigator of the RAX mission.

A team of University of Michigan students under the direction of James Cutler, Ph.D., an assistant professor in the Aerospace Engineering Department, designed, built, and operated the satellite and gathered the radar echo data.

RAX was the first CubeSat to be selected as part of an NSF program to use small satellites for space weather and atmospheric research. The RAX CubeSat is a three liter satellite weighing three kilograms. It was launched by NASA on October 28, 2011, and has since completed 18 experiments.

Explore further: NASA's Orion spacecraft back in Florida after test flight

add to favorites email to friend print save as pdf

Related Stories

Student-built satellite to prepare NASA instrument

Oct 26, 2011

(PhysOrg.com) -- When the M-Cubed satellite, built by University of Michigan students, goes into orbit, it will become the first CubeSat to test a NASA instrument for major space missions. It is scheduled ...

Student-built satellite scheduled for launch

Sep 08, 2010

(PhysOrg.com) -- A 6.5-pound satellite is scheduled to become the first stand-alone spacecraft built by Michigan students to go into orbit and perform a science mission.

View of the Upper Atmosphere

Dec 05, 2005

Scientists from NASA and the National Science Foundation discovered a way to combine ground and space observations to create an unprecedented view of upper atmosphere disturbances during space storms.

Recommended for you

Why is Venus so horrible?

2 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

5 hours ago

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

5 hours ago

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

6 hours ago

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.