Exotic metamaterials will change optics

Mar 18, 2012
This is a portion of a cell making up metamaterial. Credit: Stephane Larouche

Duke University engineers believe that continued advances in creating ever-more exotic and sophisticated man-made materials will greatly improve their ability to control light at will.

The burgeoning use of metamaterials in the field of optics does not rely on the limited set of materials found in nature, but rather man-made constructs that can be designed to control light's many properties. This control is gained by use of metamaterials, which are not so much single substances but entire man-made structures that can be engineered to exhibit properties not readily found in nature.

In their latest series of experiments, the Duke team demonstrated that a metamaterial construct they developed could create holograms -- like the images seen on credit or -- in the of light, something that had not been done before.

The Duke engineers point out that while this advance was achieved in a specific , the principles used to design and create the metamaterial in their experiments should apply in controlling light in most frequencies.

"In the past, our ability to create optical devices has been limited by the properties of ," said Stéphane Larouche, research scientist in electrical and computer engineering at Duke's Pratt School of Engineering. "Now, with the advent of metamaterials, we can almost do whatever we want to do with light.

"In addition to holograms, the approach we developed easily extends to a broad range of optical devices," Larouche said. "If realized, full three-dimensional capabilities open the door to new devices combining a wide range of properties. Our experiments provide a glimpse of the opportunities available for advanced optical devices based on metamaterials that can support quite complex material properties."

The results of Larouche's experiments, which were conducted in the laboratory of senior researcher David R. Smith, a professor of electrical and computer engineering, appeared in an advanced online publication of the journal Nature Materials. The research was supported by the Army Research Office's Multidisciplinary University Research Initiative (MURI).

The metamaterial device fashioned by the Duke team doesn't look anything like a lens, though its ability to control the direction of rays passing through it surpasses that of a conventional lens. While traditional lenses are made of clear substances -- like glass or plastic -- with highly polished surfaces, the new device looks more like a miniature set of tan Venetian blinds.

These are constructed on thin slabs of the same material used to make computer chips. Metal elements are etched upon these slabs to form a lattice-like pattern. The metal elements can be arranged in limitless ways, depending on the properties desired.

"There is unquestionable potential for far more advanced and functional if greater control can be obtained over the underlying materials," Larouche said. "The ability to design and fabricate the components of these metamaterial constructs has reached the point where we can now build even more sophisticated designs.

"We believe that just about any optical device can be made more efficient and effective using these new approaches," he said.

Explore further: High power laser sources at exotic wavelengths

Related Stories

Next generation lens promises more control

Dec 20, 2009

(PhysOrg.com) -- Duke University engineers have created a new generation of lens that could greatly improve the capabilities of telecommunications or radar systems to provide a wide field of view and greater ...

Novel man-made material could facilitate wireless power

May 23, 2011

Electrical engineers at Duke University have determined that unique man-made materials should theoretically make it possible to improve the power transfer to small devices, such as laptops or cell phones, or ultimately to ...

Manipulating light at will

Aug 01, 2011

Electrical engineers at Duke University have developed a material that allows them to manipulate light in much the same way that electronics manipulate flowing electrons.

Bending light with better precision

Aug 15, 2011

Physicists from the University of California at San Diego (UCSD) have demonstrated a new technique to control the speed and direction of light using memory metamaterials whose properties can be repeatedly changed.

Exotic material boosts electromagnetism safely

Feb 29, 2012

Using exotic man-made materials, scientists from Duke University and Boston College believe they can greatly enhance the forces of electromagnetism (EM), one of the four fundamental forces of nature, without ...

Recommended for you

Robotics goes micro-scale

3 hours ago

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Combs of light accelerate communication

Apr 14, 2014

Miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers – this has now been demonstrated by researchers of Karlsruhe ...

User comments : 0

More news stories

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...