Trace element plays major role in tropical forest nitrogen cycle

Mar 22, 2012

A new paper by researchers from the University of Georgia and Princeton University sheds light on the critical part played by a little-studied element, molybdenum, in the nutrient cycles of tropical forests. Understanding the role of molybdenum may help scientists more accurately predict how tropical forests will respond to climate change. The findings were published March 21 in the journal PLoS ONE.

Nutrient cycles track the movement of as they loop through the environment, into and back into the environment. One of the most important of these nutrients is nitrogen.

"The main way that new nitrogen is added to an ecosystem is through a process called nitrogen fixation," said Nina Wurzburger, assistant professor in the UGA Odum School of Ecology and the paper's lead author. "Bacteria in the soil can pull nitrogen out of the atmosphere and convert it into a form available for themselves and for plants. They do this by creating an enzyme called nitrogenase."

For years, it was assumed that the element phosphorus was the key ingredient bacteria in the soil needed to make this enzyme work. Now Wurzburger and her colleagues Jean Philippe Bellenger, Anne M.L. Kraepiel and Lars O. Hedin of Princeton University have found that although phosphorus is indeed important to the process, another element—molybdenum—is also crucial.

"Our results were quite unexpected," said Hedin, a professor of ecology and evolutionary biology. "We discovered that the trace element molybdenum often was the limiting nutrient, not phosphorus, as most theories would predict."

An earlier study by Princeton researchers revealed that molybdenum might play a previously unsuspected role in nitrogen fixation in tropical forest ecosystems. The researchers wanted to learn more. Working in lowland Panama, they conducted experiments at six forest sites that had similar climates and plant species but differed in the amount of phosphorus in the soil.

"It was fortuitous that we came across this naturally occurring phosphorus gradient," Wurzburger said. "The only difference between the sites is the geology, so we had a natural range of soil phosphorus levels—from high to low."

All the sites had a similar low level of molybdenum.

The researchers took a set of soil samples from each site and treated them by adding phosphorus, molybdenum or a combination of both. They then measured the response of the nitrogen-fixing bacteria in the soil.

They expected that nitrogen fixation would increase in phosphorus-rich soils when they added molybdenum and in phosphorus-poor soils when they added phosphorus, but that was not the case.

While the phosphorus-rich soils responded as predicted, the phosphorus-poor soils did not. In phosphorus-poor soils, nitrogen fixation did not increase with the addition of phosphorus alone—or, for that matter, molybdenum alone—but only responded when both phosphorus and molybdenum were added together.

"The most surprising result of our work is that phosphorus by itself is not the major constraint we've thought it to be," Wurzburger said. "This is particularly surprising for tropical forests where the highly weathered soils are thought to be poor in phosphorus."

The reason for this response, the researchers found, was that molybdenum and phosphorus behave very differently with organic matter in soil. While much of the phosphorus in soil is in a form that plants can use, much of the molybdenum—one of the least abundant of the elements essential to plants—is not.

"The chemistry of the leaf litter seems to lock up the molybdenum and make it unavailable to bacteria," Wurzburger said. "Therefore, no matter how abundant or poor is in the environment, it's molybdenum that seems to present a consistent constraint for nitrogen-fixing bacteria."

The researchers are continuing to pursue their understanding of how this relatively obscure element interacts with other nutrient cycles.

"One big question is how this might apply to other such as temperate or boreal forests," Wurzburger said. "We just don't know how important molybdenum might be. I want to know whether these findings relate to these systems too."

The answers to these questions may have widespread implications. "Tropical forests regulate the earth's climate system," Wurzburger said. "They sequester a large amount of carbon through photosynthesis. Climate models predict that tropical forests may respond to elevated levels of carbon dioxide by sequestering even more carbon, but their ability to do this may be constrained by nitrogen. Since constrains , it might also determine how much carbon can sequester. We really need to know more."

Explore further: Fiction prepares us for a world changed by global warming

Related Stories

Researchers explain nitrogen paradox in forests

Jun 18, 2008

Nitrogen is essential to all life on Earth, and the processes by which it cycles through the environment may determine how ecosystems respond to global warming. But certain aspects of the nitrogen cycle in temperate and tropical ...

Improve crop yield by removing manure solids

Mar 29, 2011

Manure has long been used as a crop fertilizer, but the challenge of finding an efficient use of the nutrients found in manure is ever present. The ratio of nitrogen to phosphorus in manure is low in relation to the nutrient ...

Improving swine waste fertilizer

Jul 08, 2008

Swine production generates large amounts of waste. While this waste contains nutrients that may serve as fertilizer when applied to agricultural fields, the ratio of nutrients in the waste is different than what a crop requires.

Recycled garden compost reduces phosphorus in soils

Jun 01, 2007

Broccoli, eggplant, cabbage and capsicum grown with compost made from recycled garden offcuts have produced equivalent yields to those cultivated by conventional farm practice, but without the subsequent build up of phosphorus.

Researchers find a keystone nutrient recycler in streams

Jun 28, 2011

(PhysOrg.com) -- Researchers from the University of Georgia Odum School of Ecology have found that certain neotropical stream ecosystems rely almost entirely on a single fish species known as the banded tetra ...

Recommended for you

Drought may take toll on Congo rainforest, study finds

12 hours ago

(Phys.org) —A new analysis of NASA satellite data shows Africa's Congo rainforest, the second-largest tropical rainforest in the world, has undergone a large-scale decline in greenness over the past decade.

User comments : 0

More news stories

On global warming, settled science and George Brandis

The Australian Attorney General, Senator George Brandis is no stranger to controversy. His statement in parliament that "people do have a right to be bigots" rapidly gained him notoriety, and it isn't hard to understand why ...

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

FCC to propose pay-for-priority Internet standards

The Federal Communications Commission is set to propose new open Internet rules that would allow content companies to pay for faster delivery over the so-called "last mile" connection to people's homes.

SK Hynix posts Q1 surge in net profit

South Korea's SK Hynix Inc said Thursday its first-quarter net profit surged nearly 350 percent from the previous year on a spike in sales of PC memory chips.