Effect of vegetation die-off tested on tidal marshland

Mar 02, 2012

Consisting of densely vegetated platforms raised slightly above sea level, and interwoven by channels of water meandering inland from the coast, tidal marshlands help buffer against strong storm surges, protect against flooding, limit coastal erosion, and provide a valuable habitat for a vast array of coastal species. Continued global climate change, however, has researchers worried about the stability of coastal marshlands in light of rising temperatures, sea levels, and a declining ocean pH. Of particular concern over shorter timescales are the potential consequences for marsh dynamics should there be a mass die-off of marshland vegetation.

Investigations of the effects of mass vegetative death on marshland behavior have been conducted almost exclusively using , but Temmerman et al. sought to bolster this previous research with empirical evidence. The authors measured water flow rates and directions in Kijkverdriet, a freshwater tidal marsh in northern Belgium, both before and after they clear-cut 0.04 square kilometers (10 acres) of vegetation. They find that flow rates increased over the previously vegetated land and decreased in the vegetation-free channels, essentially equalizing the flows over the whole area. They find that, following their intervention, the water flow direction over the freshly barren platforms became increasingly parallel to the nearby channel's flows.

Finding good agreement between their observations and the predictions of modeling efforts, the authors suggest that a large-scale plant die-off would lead to sediment infilling of marsh channels and reduced sedimentation to the previously vegetated platforms. They say that this would further reduce the survival of future marshland vegetation, triggering a runaway feedback cycle culminating in permanent marsh loss.

Explore further: Study links polar vortex chills to melting sea ice

More information: AGU's blog, GeoSpace, includes a story on the findings at bit.ly/Auy2wo .

Paper: Impact of vegetation die-off on spatial flow patterns over a tidal marsh, Geophysical Research Letters, doi:10.1029/2011GL050502 , 2012

add to favorites email to friend print save as pdf

Related Stories

Healthy coastal wetlands would adapt to rising oceans

Mar 28, 2007

Tidal marshes, which nurture marine life and reduce storm damage along many coastlines, should be able to adjust to rising sea levels and avoid being inundated and lost, if their vegetation isn't damaged and their supplies ...

How climate change is impacting marshes

Jun 07, 2011

It is a very muddy trek from the small boat to the field site along Raccoon Creek near Bridgeport, N.J. Villanova University marine scientist Nathaniel Weston and his team are all carrying ladders and equipment ...

Bleak future for Bay area tidal marshes?

Nov 17, 2011

A new study, led by PRBO Conservation Science (PRBO), projects a bleak future for San Francisco Bay's tidal marshes under high-end sea-level rise scenarios that are increasingly likely. PRBO and colleagues found that in the ...

Recommended for you

Tropical Storm Dolly forms, threatens Mexico

2 hours ago

Tropical Storm Dolly formed off Mexico's northeastern coast on Tuesday and headed toward landfall in Tamaulipas state, threatening to spark floods and mudslides, forecasters said.

Giant garbage patches help redefine ocean boundaries

4 hours ago

The Great Pacific Garbage Patch is an area of environmental concern between Hawaii and California where the ocean surface is marred by scattered pieces of plastic, which outweigh plankton in that part of ...

New satellite maps out Napa Valley earthquake

5 hours ago

Scientists have used a new Earth-observation satellite called Sentinel-1A to map the ground movements caused by the earthquake that shook up California's wine-producing Napa Valley on 24 August 2014.

Rainfall monitoring with mobile phones

6 hours ago

Agriculture, water resource management, drought and flood warnings, etc.: rainfall monitoring is vital in many areas. But the observation networks remain insufficient. This is not the case for antennas for ...

User comments : 0