The earliest stages of planet formation

Mar 26, 2012
The earliest stages of planet formation
An artist's conception of a young brown dwarf star with its dusty disk, and with an orbiting planet. New research on these dust disks suggests that material in the cold, outer disk may have migrated there from inner regions. Credit: ESA

(PhysOrg.com) -- Small dust particles in a disk of gas around a young star, according to current models, gradually coagulate during the first million years until kilometer-sized objects are formed. These in turn coalesce and grow into planets. The processes at work depend in part on the chemical composition of the dust grains and how their sizes, shapes, and structures evolve.

The most dominant dust species in circumstellar material are thought to be oxygen-rich silicates (typically minerals containing magnesium and iron as well as silicon and oxygen). Besides coming in a range of shapes and sizes, these grains can either have a crystalline (that is, highly ordered) structure, or its opposite, an amorphous structure. Grains that grow by gradual are amorphous, but if during their lifetime they were heated to near-melting temperatures and then cooled, develop. These differences can be observed in the infrared by , because emit most strongly at wavelengths of radiation that are approximately the same as their size, with details depending on these structural differences. The spectral behavior of dust emission, therefore, makes it possible to determine the properties of the dust grains in a disk, and even to infer the history.

CfA astronomer Mario Guarcello and his colleagues undertook an infrared study of disk dust grains in an effort to probe the nature of protoplanetary development, and specifically to look for evidence of grain processing via heating (in particular, crystalline versus amorphous grains) in different regions of the disk, perhaps the result of local heating due to shocks or collisions. They chose to examine the disks of young brown . These stars have masses less than about 8% of the Sun's, and lack sufficient gravitational contraction to heat up their interiors to the roughly ten million kelvin temperatures needed for hydrogen burning (hydrogen burning fuels the Sun). Instead, they burn more dimly by the power of deuterium fusion. Only about twenty percent of brown dwarf stars five million years old show evidence for dust emission from disks. The combined evidence is that grain growth, crystallization, and the production of other dust grain characteristics are probably completed by the time a brown dwarf is only a million years old.

The scientists used infrared spectra from the Spitzer Space Telescope to analyze the dust in each of a set of twenty very young brown dwarf disks. They report finding that, contrary to conventional wisdom that the cold, outer regions of such disks should have amorphous grains, the cold grains there are often crystalline: Something happened in the first million years to heat them to melting temperatures. What this was is still not known. It might be a local phenomenon, perhaps a shock wave, or it might be that these grains were originally closer to the star and migrated outward to the cold regions. The astronomers note a tantalizing analogy to comets in our solar system, which - curiously - also have crystalline grains even though they reside in the cold outer regions. Maybe comets also formed closer in to the Sun and then migrated out? The new paper answers some questions while refining others, and is a good example of the important progress being made today in understanding how planets and planetary systems form.

Explore further: 'Blockbuster' science images

Related Stories

Building a new planet

Jan 04, 2011

(PhysOrg.com) -- Astronomers over the past decade have made remarkable progress in the study of extrasolar planets; over 500 distant worlds are now confirmed. Meanwhile, as this active research community continues ...

The origin of comet material formed at high temperatures

Jul 22, 2011

Comets are icy bodies, yet they are made of materials formed at very high temperatures. Where do these materials come from? French researchers have now provided the physical explanation behind this phenomenon. ...

The making of dust

Jul 06, 2011

(PhysOrg.com) -- On the Earth, dust particles are everywhere - under beds, on bookshelves, even floating in the air. We take dust for granted. Dust is also common in space, and it is found for example in the ...

Water and ammonia factories

Nov 08, 2011

(PhysOrg.com) -- Complex molecules, including many organic species, exist in a wide range of environments in the cosmos, and are especially abundant in giant molecular clouds of gas and dust where new stars ...

Recommended for you

'Blockbuster' science images

Nov 21, 2014

At this point, the blockbuster movie Interstellar has created such a stir that one would almost have to be inside a black hole not to know about it. And while the science fiction thriller may have taken some ...

Estimating the magnetic field of an exoplanet

Nov 20, 2014

Scientists developed a new method which allows to estimate the magnetic field of a distant exoplanet, i.e., a planet, which is located outside the Solar system and orbits a different star. Moreover, they ...

It's filamentary: How galaxies evolve in the cosmic web

Nov 20, 2014

How do galaxies like our Milky Way form, and just how do they evolve? Are galaxies affected by their surrounding environment? An international team of researchers, led by astronomers at the University of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.