Study sheds light on the diseasing-fighting process of 'autophagy'

Mar 30, 2012 By Regina Yu
Assistant Professor Dr Zhao Yanxiang (left) and research team member Dr. Li Xiaohua

A team of scientists from The Hong Kong Polytechnic University has made a novel discovery regarding the molecular structure of a protein that plays a crucial regulatory role in the “autophagy” cellular process. This breakthrough has paved the way for researchers to target “autophagy” for potential treatment of cancer and other diseases.

Main ContentA team of scientists from the Department of Applied Biology and Chemical Technology at The Hong Kong Polytechnic University (PolyU) has made a novel discovery regarding the of a protein that plays a crucial regulatory role in the “autophagy” cellular process. This breakthrough has paved the way for researchers to target “autophagy” for potential treatment of cancer and other diseases.

Heading the research team is Dr. Zhao Yanxiang, Assistant Professor of PolyU’s Department of Applied Biology and Chemical Technology, with team members Dr. Li Xiaohua and Mr. Che Ka-hing. They are the first to solve the structure of a portion of the Beclin-1 protein, and this important finding has been recently published in the journal Nature Communications.

According to Dr. Zhao, autophagy is a profoundly important process that takes place in all cells, providing the equivalent of a biological recycling system: aged, defunct components are broken down to its basic building blocks, which can be used to assemble new, functional machinery. Autophagy is closely related to many biological processes such as embryonic development and innate immunity. Malfunction of autophagy has been connected to ageing and many serious diseases such as Parkinson’s disease, diabetes and cancer.

Recent studies have shown that protein Beclin-1 is a major regulator of autophagy. Dr. Zhao’s work sheds light on how this serves as a signal-sorting hub: its atomic structure reveals why it is capable of interacting with different partners. More importantly, by changing its partners, Beclin-1 can modulate cellular autophagy activity and thus influence a cell’s survival or death. Better understanding of how Beclin-1 and its various binding partners regulate autophagy could, for example, help determine how it can be exploited in cancer therapy, since autophagy and Beclin-1 are both key players in tumour suppression as well as resistance to chemotherapy.

Based on this important finding, Dr. Zhao plans to further research on the role of Beclin-1 as this remarkable autophagy regulator, and how such knowledge might be translated into innovations and improvements in disease treatment.

Explore further: Researchers successfully clone adult human stem cells

Provided by The Hong Kong Polytechnic University

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Cell recycling protects tumor cells from anti-cancer therapy

Mar 06, 2008

Cells have their own recycling system: Discarded cellular components, from individual proteins through to whole cellular organs, are degraded and the building blocks re-used in a different place. The scientific term for this ...

Protein identified that can lengthen our life?

Feb 27, 2012

Cells use various methods to break down and recycle worn-out components—autophagy is one of them. In the dissertation she will be defending at Umea University in Sweden, Karin Håberg shows that the protein SNX18 ...

Small molecules can starve cancer cells

Oct 09, 2011

All cells in our body have a system that can handle cellular waste and release building blocks for recycling. The underlying mechanism is called autophagy and literally means "self-eating". Many cancer cells have increased ...

Recommended for you

Researchers successfully clone adult human stem cells

9 hours ago

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

12 hours ago

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...