Discovery of new catalyst promises cheaper, greener drugs

March 27, 2012

A chemistry team at the University of Toronto has discovered environmentally-friendly iron-based nanoparticle catalysts that work as well as the expensive, toxic, metal-based catalysts that are currently in wide use by the drug, fragrance and food industry.

"It is always important to strive to make industrial syntheses more green, and using iron catalysts is not only much less toxic, but it is also much more cost effective," said Jessica Sonnenberg, a PhD student and lead author of a paper published this week in the .

The research, which was directed by Robert Morris, chair of the Department of Chemistry, involved several steps. Suspecting the existence of nanoparticles, the team first set out to identify the iron catalysts. They then conducted investigations using an to confirm that the iron nanoparticles were actually being formed during catalysis. The next step was to ensure that the iron nanoparticles were the active catalytic agents. This was done with polymer and poisoning experiments which showed that only the on the surface of a nanoparticle were active.

But a further challenge remained. "Catalysts, even cheap iron ones developed for these types of reaction, still suffer one major downfall," explained Sonnenberg. "They require a one-to-one ratio of very expensive – the molecule that binds to the central metal atom of a chemical compound – to yield catalytic activity. Our discovery of functional surface nanoparticles opens the door to using much smaller ratios of these expensive compounds relative to the metal centres. This drastically reduces the overall cost of the transformations."

Explore further: Chemists uncover 'green' catalysts with promise for cheaper drug production

Related Stories

An ideal candidate for sustainable catalysis

September 16, 2010

(PhysOrg.com) -- The development of environmentally friendly and efficient catalysts is a major challenge in the field of chemical research, with the focus now being placed on the search for inexpensive metal catalysts. At ...

Improving catalysis

June 14, 2011

(PhysOrg.com) -- Cardiff University research may help to improve the way that metal nanoparticles are used in catalysis – the process of making chemical reactions go faster.

Touch of gold improves nanoparticle fuel-cell reactions

March 12, 2012

Advances in fuel-cell technology have been stymied by the inadequacy of metals studied as catalysts. The drawback to platinum, other than cost, is that it absorbs carbon monoxide in reactions involving fuel cells powered ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Morin Brison
not rated yet Mar 27, 2012

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.