Preventing contamination in recycling

Mar 06, 2012 by David L. Chandler
Image: Michelle Arseneault/flickr

Aluminum has long been the poster child of recycling. About half of all aluminum used in the United States is now recycled, and this recycling has clear and dramatic benefits: Pound for pound, it takes anywhere from nine to 18 times as much energy to produce aluminum from raw ore as from recycled material.

Because it saves so much energy — and therefore money — aluminum continues to expand. But a new MIT analysis finds that this expansion could run into problems unless measures are taken to reduce impurities that can build up as aluminum is recycled over and over again: everything from paint and labels on cans to other metals that are accidentally mixed in. Such impurities will continue to add up, the MIT researchers say, but can be managed so as to keep the accumulation to acceptable levels if extra steps are taken while the recycled goods are sorted, or during their molten processing.

MIT researchers Randolph Kirchain and Elsa Olivetti, of the Materials Systems Lab, along with Gabrielle Gaustad of the Rochester Institute of Technology, published their findings in the journal Resources, Conservation and Recycling.

A major aluminum producer requested this analysis to help decide whether to install improved separation systems to prepare for impurities that could become more serious over time. “They couldn’t make the business case based on what’s happening today,” Kirchain says — but his team’s analysis showed that it would indeed make sense to install such systems in anticipation of future changes.

For now, the problem remains manageable, Kirchain says, because different uses require different grades of aluminum. For example, aluminum engine blocks, one major market for recycled material, can be made from metal with relatively high levels of impurities without suffering any loss of performance or durability. But more specialized applications, such as electronic circuits or aerospace materials, require much higher purity. 

“There is a huge range of impurity tolerance,” Olivetti says. “The question is, how will the balance of such markets over time compare with the kinds of materials coming through the recycling stream?”

The study found many techniques available to reduce impurities in recycled aluminum. In some cases, these technologies are simply extensions of those already used in the initial separation of aluminum from raw ore; others are extensions of processes used to separate different materials in the recycling stream. Most of these systems are difficult to add as retrofits to existing plants, the study found, so it makes more economic sense to add them as new plants are built, even if they are not yet needed.

“We’re continuing to collect more and more scrap,” Kirchain says, which suggests that “we’re likely to have more and more problems” with accumulating impurities. So far, the operators of aluminum-smelting plants have been able to accommodate variations in quality. “If material comes in that’s more contaminated, they’ll divert that toward more forgiving applications,” he says. The cleanest material is reserved for the most specialized applications, such as airplane parts.

Kirchain says his team’s analysis — although directed specifically at aluminum — is also an attempt to develop methods for analyzing the life cycle of other materials that are becoming more significant parts of the recycling stream. And it includes analysis of the social factors governing people’s decisions on disposal of materials, which can affect how much contaminating material ends up in a given waste stream — or whether potentially useful material ends up in a landfill instead of being reused.

In order to maximize the utility of recycled , as well as other recycled materials, there is a need for more research on reducing accumulated contaminants, Kirchain says. “This is a technological area that has been underinvested in,” he says. “Technology for dealing with garbage is not an exciting, high-profile field, but there is real value in investing in this.”

David Leon, an engineer at Alcoa Technology’s casting technology division, who was not involved in this research, says, “Developing methodologies to increase the use of ever-decreasing quality scrap is of major importance to the industry. Even as important is the development of tools to make the right decisions regarding implementation of these technologies.”

Explore further: Comfortable climate indoors with porous glass

add to favorites email to friend print save as pdf

Related Stories

Revealing how a battery material works

Feb 08, 2012

Since its discovery 15 years ago, lithium iron phosphate (LiFePO4) has become one of the most promising materials for rechargeable batteries because of its stability, durability, safety and ability to deliver ...

New tool enhances view of muscles

Jan 23, 2012

Simon Fraser University associate professor James Wakeling is adding to the arsenal of increasingly sophisticated medical imaging tools with a new signal-processing method for viewing muscle activation details that have never ...

A new twist on nanowires

Feb 22, 2012

Nanowires — microscopic fibers that can be “grown” in the lab — are a hot research topic today, with a variety of potential applications including light-emitting diodes (LEDs) and sensors. ...

Recommended for you

Tesla says decision on battery factory months away

2 hours ago

(AP)—Electric car maker Tesla Motors said Thursday that it is preparing a site near Reno, Nevada, as a possible location for its new battery factory, but is still evaluating other sites.

Comfortable climate indoors with porous glass

21 hours ago

Proper humidity and temperature play a key role in indoor climate. In the future, establishing a comfortable indoor environment may rely on porous glass incorporated into plaster, as this regulates moisture ...

Crash-testing rivets

22 hours ago

Rivets have to reliably hold the chassis of an automobile together – even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced ...

Customized surface inspection

22 hours ago

The quality control of component surfaces is a complex undertaking. Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into ...

Sensors that improve rail transport safety

22 hours ago

A new kind of human-machine communication is to make it possible to detect damage to rail vehicles before it's too late and service trains only when they need it – all thanks to a cloud-supported, wireless ...

Tiny UAVs and hummingbirds are put to test

Jul 30, 2014

Hummingbirds in nature exhibit expert engineering skills, the only birds capable of sustained hovering. A team from the US, British Columbia, and the Netherlands have completed tests to learn more about the ...

User comments : 0