Taking a closer look at molecular electronics

Mar 09, 2012
Figure 1: A schematic of fluorescence yield x-ray absorption spectroscopy. X-rays (left) fall onto active molecules inside an organic transistor (bottom right), causing fluorescent emission. The intensity of the emission as a function of incident energy reveals information about the state of the emitting molecules (top right). Credit: 2012 Hiroyuki Kato

Molecules and polymers have unique electronic and optical properties suitable for use in electronic devices. These properties, however, are complex and not well understood. Charge transport, for example, is affected by molecule shape, which can change during device operation and is difficult to measure. Now, a new technique is available to characterize the electronic states of molecules, thanks to research by Hiroyuki Kato from the RIKEN Advanced Science Institute and his colleagues in Japan.

The key characteristic of the team’s technique—called fluorescence yield x-ray absorption spectroscopy—is its ability to probe molecules that are buried underneath other molecules, as well as under metallic electrodes (Fig. 1). First, x-ray photons illuminate a device of interest, causing core electrons inside a particular atom to be promoted to higher energy levels. When these electrons relax, they release their energy either to other electrons, or to photons, Kato explains. Finally, these energetic electrons or photons are emitted from the device, and the researchers can measure their energy. Then, they can determine the properties of the emitting molecule. The ability to select the type of atom that is excited—for example, carbon—aids the analysis.

Other researchers had previously monitored electron relaxation by observing emitted electrons. However, they were limited to observing molecules near the device surface since electrons have difficulty passing through other molecules and metals. Kato and colleagues therefore monitored the relaxation of excited electrons via emitted photons since they exit the device easily.

The researchers applied their photon-based technique to an organic thin-film transistor made with the molecule DH6T, which is a small called an oligomer. As they operated the transistor by varying the voltage applied to the gate electrode, Kato and colleagues saw the emitted photon spectrum shift in real time. The dependence of this shift on wavelength and voltage showed that, contrary to expectations, the emitted photons were unaffected by charges induced by the gate voltage. Instead, their spectrum was determined entirely by the internal state of the probed molecules, even under an applied electric field.

Further analysis showed that this electric field was not distributed evenly across the oligomer; rather, it fell disproportionately across one of the chemical groups making up the oligomer. This conclusion represents a first look into the electric field distribution in molecular devices at the scale of individual . Kato says he expects the technique will prove to be a valuable characterization tool for the building blocks of future electronic and optical devices.

Explore further: A new generation of storage—ring

More information: Kato, H.S., et al. Characterization of an organic field-effect thin-film transistor in operation using fluorescence-yield x-ray absorption spectroscopy. Physical Review Letters 107, 147401 (2011).

add to favorites email to friend print save as pdf

Related Stories

Quantum electronics: Two photons and chips

Jan 20, 2006

Scientists at Toshiba Research Europe Limited (Cambridge, UK) believe they are on to a way of producing entangled twins of photons using a simple semiconductor electronic device. Such a chip-based source of entangled photons ...

Detecting an unexpected delay at ultrafast speed

Aug 05, 2011

Molecules that suddenly transform into new structures when stimulated by photons or electrons play key roles in many chemical and biological processes. Recently, chemists have discovered that adding transition ...

New device exposes explosive vapors

Aug 15, 2011

Decades after the bullets have stopped flying, wars can leave behind a lingering danger: landmines that maim civilians and render land unusable for agriculture. Minefields are a humanitarian disaster throughout the world, ...

Size matters -- even for molecules

Feb 03, 2012

(PhysOrg.com) -- Two electrons that are emitted from a large molecule by a single photon may originate from far apart within that molecule. In a recent study on hydrocarbon molecules consisting of one to five ...

Recommended for you

A new generation of storage—ring

18 hours ago

A bright synchrotron source that emits over a wide part of the electromagnetic spectrum from the infrared to hard X-rays is currently being built in Lund, Sweden. The MAX IV facility presents a range of technical ...

Universe may face a darker future

22 hours ago

New research offers a novel insight into the nature of dark matter and dark energy and what the future of our Universe might be.

High-intensity sound waves may aid regenerative medicine

Oct 30, 2014

Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's ...

Formula could shed light on global climate change

Oct 30, 2014

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.