Chemistry in one dimension offers surprising result

Mar 27, 2012

Due to their unique properties single walled carbon nanotubes have been suggested as a promising material for electronics, optics and in other fields of materials science. When scientists from Umea University and Aalto University tried to perform a reaction between hydrogen gas and fullerene molecules encapsulated in nanotubes something very unlikely suddenly appeared possible.

" on the often appears to be different compared to chemistry in the normal scale and carbon nanotubes provide ideal conditions for studies of reactions in nanospace," says Alexandr Talyzin, docent at the Department of Physics, Umeå University.

The standard approch to make chemical recations inside of single walled carbon nanotubes, SWNTs, is to fill the inner space with (e.g. fullerenes, thus forming so called peapods) and make them react with each other.

The nanotube walls will then protect the encapsulated molecules from outer space and make reactions with molecules and atoms outside the tube impossible. Once the SWNTs are filled with C60 molecules there is not enough space for hydrogen molecules to go in. That was the common opinion when the research groups started their experiments a few years ago.

But their experiments leave no doubt, hydrogen does actually penetrate into peapods and react with fullerenes. The evidence is rather direct, when the temperature and pressure of hydrogenation is taken to extreme values the fullerene cage collapses completely and large hydrogen molecules are formed. This was confirmed both by Raman spectroscopy and high resolution TEM.

The study provides one more example that chemical reactions in nanoreactors are not always the same as in “normal” conditions. In three-dimensional structure molecules can react with their neighbours in all possible directions, up, down, right, left etc.

"Inside of carbon nanotubes fullerene molecule have only two neighbours, lets say to the right and to the left. Similarly, the reaction with hydrogen is also limited to one-dimension," says Alexandr Talyzin.

A great advantage is that even single molecules inside of SWNTs can be observed using high resolution electron microscopy, something extremely difficult for bulk powders, he adds. High quality images collected at Aalto University allowed the scientists to observe not only induced collapse of C60, but also hydrogen-driven coalescence of molecules into chain polymers and tubules.

"What we learned is a rather general result for nano-chemistry. Now we have direct evidence that molecules inside of SWNts can be reacted with gases. It opens enormous possibilities for synthesis of novel hybrid materials and chemical modification of encapsulated molecules and materials," says Alexandr Talyzin.

Explore further: Demystifying nanocrystal solar cells

More information: “Hydrogen driven collapse of C60 inside of SWNTs” is published on line in Angewandte Chemie, onlinelibrary.wiley.com/doi/10… e.201200946/abstract

Related Stories

Hydrogen opens the road to graphene ... and graphane

May 09, 2011

(PhysOrg.com) -- An international research team has discovered a new method to produce belts of graphene called nanoribbons. By using hydrogen, they have managed to unzip single-walled carbon nanotubes. The ...

Nanochemistry in Action

Mar 06, 2009

(PhysOrg.com) -- Using a single-walled carbon nanotube (SWCNT) as a test tube, scientists can explore chemistry at the nanoscale, which involves some unique effects. Nanotubes provide a confined, one-dimensional ...

Tiny carbon nanotubes show big germ-fighting potential

Sep 03, 2007

In nanoscience’s version of a David-and-Goliath story, scientists in Connecticut are reporting the first direct evidence that carbon nanotubes have powerful antimicrobial activity, a discovery that could help fight the ...

Recommended for you

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.