'Bacterial shock' to recapture essential phosphate

Mar 27, 2012

Bacteria could be exploited to recapture dwindling phosphate reserves from wastewater according to research presented at the Society for General Microbiology's Spring Conference in Dublin this week.

Phosphorus – in the form of - is essential for all living things as a component of DNA and RNA and its role in cellular metabolism. Around 38 million tonnes of are extracted each year from rock. Most of this extracted phosphorus goes into the production of fertilizers to replace the phosphates that plants remove from the soil. However, it is a scare natural resource and current estimates suggest that reserves of phosphate rock may only last for the next 45-100 years.

Researchers at Queen's University Belfast (QUB) are developing a novel biological process to remove extracted phosphate from – where it ultimately ends up after manufacturing. Dr John McGrath who is leading the project explained, "Phosphate in wastewater is a pollutant that causes increased growth of algae and plants, reducing the oxygen available for aquatic organisms. This is known as eutrophication and poses the single biggest threat to water quality in Northern Ireland and indeed globally."

The work at QUB has focused on microorganisms that capture and store phosphate from wastewater, and how this process varies under different nutritional and environmental conditions. "A variety of microbes in wastewater accumulate phosphorus inside their cells and store it as a biopolymer known as polyphosphate. In some cases, this can represent up to 20% of the dry weight of the microorganism!" explained Dr McGrath. "If we can harness this process we have a feasible biotechnological route to remove and recycle phosphate from wastewater."

The team have recently discovered a physiological 'shock' treatment which significantly increases microbial uptake of phosphorus and its accumulation inside cells. "It's similar to jumping into the sea on a winter's day – the first thing you do is take a sharp intake of breath. When we shock the microorganisms, their response is to take in phosphorus," explained Dr McGrath. "We've demonstrated this using activated sludge, containing a variety of microbes, from wastewater treatment works and shown this shock treatment is effective at producing a phosphorus-rich biomass suitable for phosphorus recycling."

Dr McGrath believes that developing such biotechnological processes is essential for regenerating valuable mineral resources. "No alternative to phosphorus exists – we urgently need to find ways of recovering and recycling phosphates. It's a pollutant we can't live without." he said. "Phosphates are currently removed from wastewater by chemical methods, however this is expensive and results in the production of large volumes of sludge. In contrast, the process we are developing is sustainable and efficient."

Explore further: Fighting bacteria—with viruses

Provided by Society for General Microbiology

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Plant nutrients from wastewater

Sep 07, 2010

Nitrogen, phosphorous and potassium -- there are valuable nutrients contained in wastewater. Unfortunately, these essential nutrients are lost in conventional wastewater treatment plants. This is the reason why researchers ...

Maryland to ban phosphorus in soap

Mar 23, 2007

Maryland lawmakers approved a ban on dish detergent containing phosphorus in an effort to keep phosphates out of Chesapeake Bay.

Better sludge through metagenomics

Sep 25, 2006

Few stop to consider the consequences of their daily ablutions, the washing of clothes, the watering of lawns, and the flush of a toilet. However, wastewater treatment--one of the cornerstones of modern civilization--is the ...

Unsung bedrock of prosperity

Apr 18, 2011

Modern agriculture would be inconceivable without phosphate fertilizers - and it needs more and more of them. Experts warn of an imminent phosphorus shortage. But not Roland Scholz from the Institute of Environmental ...

Recommended for you

Fighting bacteria—with viruses

4 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

5 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

pooforyou
not rated yet Mar 27, 2012
So...BNR? This has been around for quite a while in the states.