Antibiotic resistant bacteria proliferate in agricultural soils

Mar 20, 2012

Infectious diseases kill roughly 13 million people worldwide, annually, a toll that continues to rise, aided and abetted by resistance genes. Now a study, published in the March Antimicrobial Agents and Chemotherapy finds reservoirs of resistance in agricultural soils. These contained more diverse populations of drug resistant bacteria, with greater levels of resistance, than composted and forest soils. Vegetable garden soil alone harbored multi-drug resistant bacteria, and also had the highest level of resistance to three major antibiotic classes.

"The observations of this study point to the widespread presence of high level antibiotic-resistant bacteria in ," says first author Magdalena Popowska of the University of Warsaw, Poland.

Antibiotics, and thereto, occur naturally in soil due to the arms race between microbial species competing for territory. "Almost 50 percent of Actinomycetes isolated from soil are capable of synthesizing antibiotics, which provide a natural antibiotic residue in soils," says Popowska. But the use of antibiotics to promote livestock growth boosts the resistance to a whole new level, as demonstrated by the differences in resistance level in agricultural and forested soils, she says. Manure from antibiotic-fed animals exacerbates the resistance spread, as demonstrated by the high levels in the manure-amended vegetable garden soils.

The spread of resistance and multi-resistant strains of pathogens and opportunistic bacteria that can infect humans and animals is aided and abetted by the fact that they are frequently carried on mobile genetic elements, notably plasmids and transposons, that can be transferred not only among bacteria of the same species, but among different species, says Popowska.

The results of this study "should assist in the development of regulations regarding the use of antibiotics in the broader environment e.g. in plant protection products fish farming, and industry," says Popowska. "We think they will also help optimize methods allowing the combating of emerging bacterial infections, as well as in the development and application of new chemotherapeutic agents."

The use of antibiotics "should be restricted to dangerous bacterial infections, and to strict medical supervision," says Popowska. "This cannot be emphasized strongly enough."

Explore further: Two-armed control of ATR, a master regulator of the DNA damage checkpoint

More information: M. Popowska, M. Rzeczycka, A. Miernik, A. Krawczyk-Balska, F. Walsh, and B. Duffy, 2012. Influence of soil use on prevalence of tetracycline, streptomycin, and erythromycin resistance and associated resistance genes. Antimicrobial Agents and Chemotherapy 56:1434-1443.

Provided by American Society for Microbiology

4 /5 (8 votes)

Related Stories

Newly discovered reservoir of antibiotic resistance genes

Oct 21, 2011

Waters polluted by the ordure of pigs, poultry, or cattle represent a reservoir of antibiotic resistance genes, both known and potentially novel. These resistance genes can be spread among different bacterial species by bacteriophage, ...

Antibiotic resistance spreads rapidly between bacteria

Apr 11, 2011

The part of bacterial DNA that often carries antibiotic resistance is a master at moving between different types of bacteria and adapting to widely differing bacterial species, shows a study made by a research ...

Resistant gut bacteria will not go away by themselves

Jun 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

Roads pave the way for the spread of superbugs

Sep 29, 2011

Antibiotic resistant E. coli was much more prevalent in villages situated along roads than in rural villages located away from roads, which suggests that roads play a major role in the spread or containment of antibiotic resist ...

Recommended for you

Japanese scientist resigns over stem cell scandal

Dec 19, 2014

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

Dec 18, 2014

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.