All-inorganic nanocrystals boost infrared emission

Mar 14, 2012
Synthesis of all-inorganic infrared-emitting PbS/CdS nanocrystals and integration into infrared-transparent As2S3 chalcogenide glass matrix

New chemistry has been developed to integrate lead chalcogenide nanocrystals into continuous inorganic matrices of chalcogenide glasses. Inorganic capping, rather than conventional organic capping ligands, allows simple and low-temperature encapsulation of these nanocrystals into solution-cast infrared (IR)-transparent amorphous As2S3 chalcogenide matrices. The resulting all-inorganic thin films display stable infrared luminescence in the technologically important near-IR region.

Conventional methods for synthesizing include capping them with long-chain to control , morphology, and stability. But molecular vibrations associated with those ligands sap the particles' excitation energies, reducing IR emission efficiency and stability.

In a wholly unique approach, the research team devised a solution-phase method for making core/shell nanocrystals in which conventional organic groups are replaced with inorganic As2S3 ligands. These all-inorganic particles are then mildly heated to convert the ionic to an IR-transparent As2S3 matrix. Low-temperature integration of nanocrystals into transparent inorganic matrices is an important step for their optical and optoelectronic integration The new data suggest that dielectric screening is the major cause of slow radiative rates in conventional lead chalcogenide nanocrystals. Effective integration reduces the dielectric contrast and enables fast radiative rates. This is especially useful for nanocrystals emitting in the IR region where few host materials can provide good optical transparency.

Explore further: Dye-sensitized solar cell absorbs a broad range of visible and infrared wavelengths

More information: M.V. Kovalenko et al., " Inorganically Functionalized PbS-CdS Colloidal Nanocrystals: Integration into Amorphous Chalcogenide Glass and Luminescent Properties," J. Am. Chem. Soc, 134, 2457-2460 (2012) (online)

add to favorites email to friend print save as pdf

Related Stories

Nanocrystals reveal activity within cells

Jun 16, 2009

Researchers at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory have created bright, stable and bio-friendly nanocrystals that act as individual investigators of activity within ...

Recommended for you

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

Tough foam from tiny sheets

Jul 29, 2014

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

User comments : 0