All-inorganic nanocrystals boost infrared emission

Mar 14, 2012
Synthesis of all-inorganic infrared-emitting PbS/CdS nanocrystals and integration into infrared-transparent As2S3 chalcogenide glass matrix

New chemistry has been developed to integrate lead chalcogenide nanocrystals into continuous inorganic matrices of chalcogenide glasses. Inorganic capping, rather than conventional organic capping ligands, allows simple and low-temperature encapsulation of these nanocrystals into solution-cast infrared (IR)-transparent amorphous As2S3 chalcogenide matrices. The resulting all-inorganic thin films display stable infrared luminescence in the technologically important near-IR region.

Conventional methods for synthesizing include capping them with long-chain to control , morphology, and stability. But molecular vibrations associated with those ligands sap the particles' excitation energies, reducing IR emission efficiency and stability.

In a wholly unique approach, the research team devised a solution-phase method for making core/shell nanocrystals in which conventional organic groups are replaced with inorganic As2S3 ligands. These all-inorganic particles are then mildly heated to convert the ionic to an IR-transparent As2S3 matrix. Low-temperature integration of nanocrystals into transparent inorganic matrices is an important step for their optical and optoelectronic integration The new data suggest that dielectric screening is the major cause of slow radiative rates in conventional lead chalcogenide nanocrystals. Effective integration reduces the dielectric contrast and enables fast radiative rates. This is especially useful for nanocrystals emitting in the IR region where few host materials can provide good optical transparency.

Explore further: Nano filter cleans environmentally hazardous industrial byproducts

More information: M.V. Kovalenko et al., " Inorganically Functionalized PbS-CdS Colloidal Nanocrystals: Integration into Amorphous Chalcogenide Glass and Luminescent Properties," J. Am. Chem. Soc, 134, 2457-2460 (2012) (online)

add to favorites email to friend print save as pdf

Related Stories

Nanocrystals go bare: Stripping material’s tiny tethers

Dec 09, 2011

(PhysOrg.com) -- Researchers with the DOE's Lawrence Berkeley National Laboratory have discovered a universal technique for stripping nanocrystals of tether-like molecules that until now have posed as obstacles ...

Nanocrystals reveal activity within cells

Jun 16, 2009

Researchers at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory have created bright, stable and bio-friendly nanocrystals that act as individual investigators of activity within ...

Recommended for you

'Mind the gap' between atomically thin materials

Dec 24, 2014

When it comes to engineering single-layer atomic structures, "minding the gap" will help researchers create artificial electronic materials one atomic layer at a time, according to a team of materials scientists. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.