All-inorganic nanocrystals boost infrared emission

Mar 14, 2012
Synthesis of all-inorganic infrared-emitting PbS/CdS nanocrystals and integration into infrared-transparent As2S3 chalcogenide glass matrix

New chemistry has been developed to integrate lead chalcogenide nanocrystals into continuous inorganic matrices of chalcogenide glasses. Inorganic capping, rather than conventional organic capping ligands, allows simple and low-temperature encapsulation of these nanocrystals into solution-cast infrared (IR)-transparent amorphous As2S3 chalcogenide matrices. The resulting all-inorganic thin films display stable infrared luminescence in the technologically important near-IR region.

Conventional methods for synthesizing include capping them with long-chain to control , morphology, and stability. But molecular vibrations associated with those ligands sap the particles' excitation energies, reducing IR emission efficiency and stability.

In a wholly unique approach, the research team devised a solution-phase method for making core/shell nanocrystals in which conventional organic groups are replaced with inorganic As2S3 ligands. These all-inorganic particles are then mildly heated to convert the ionic to an IR-transparent As2S3 matrix. Low-temperature integration of nanocrystals into transparent inorganic matrices is an important step for their optical and optoelectronic integration The new data suggest that dielectric screening is the major cause of slow radiative rates in conventional lead chalcogenide nanocrystals. Effective integration reduces the dielectric contrast and enables fast radiative rates. This is especially useful for nanocrystals emitting in the IR region where few host materials can provide good optical transparency.

Explore further: Demystifying nanocrystal solar cells

More information: M.V. Kovalenko et al., " Inorganically Functionalized PbS-CdS Colloidal Nanocrystals: Integration into Amorphous Chalcogenide Glass and Luminescent Properties," J. Am. Chem. Soc, 134, 2457-2460 (2012) (online)

add to favorites email to friend print save as pdf

Related Stories

Nanocrystals go bare: Stripping material’s tiny tethers

Dec 09, 2011

(PhysOrg.com) -- Researchers with the DOE's Lawrence Berkeley National Laboratory have discovered a universal technique for stripping nanocrystals of tether-like molecules that until now have posed as obstacles ...

Nanocrystals reveal activity within cells

Jun 16, 2009

Researchers at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory have created bright, stable and bio-friendly nanocrystals that act as individual investigators of activity within ...

Recommended for you

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.