Express yourself: How zygotes sort out imprinted genes

Feb 16, 2012

Writing in the February 17, 2012 issue of the journal Cell, researchers at the Ludwig Institute for Cancer Research, the University of California, San Diego School of Medicine and the Toronto Western Research Institute peel away some of the enduring mystery of how zygotes or fertilized eggs determine which copies of parental genes will be used or ignored.

In developing humans and other , not all genes are created equal – or equally used. The expression of certain genes, known as , is determined by just one copy of the parents' genetic contribution. In humans, there are at least 80 known imprinted genes. If a copy of an imprinted gene fails to function correctly – or if both copies are expressed – the result can be a variety of heritable conditions, such as Prader-Willi and Angelman syndromes, or diseases like cancer.

In the Cell paper, a team of scientists, led by Bing Ren, PhD, head of the Laboratory of Gene Regulation at the Ludwig Institute for at UC San Diego, describe in greater detail how differential DNA methylation in the two parental genomes set the stage for selective expression of imprinted genes in the mouse. Differential DNA methylation is essential to normal development in humans and other higher organisms. It involves the addition of hydrocarbon compounds called methyls to cytosine, one of the four bases or building blocks of DNA. Such addition alters the expression of different genes, boosting or suppressing them to help direct embryonic growth and development.

The process is sometimes called epigenetic regulation. Epigenetics is the study of factors influencing inheritance beyond the genes themselves. "DNA is just half the story," said Ren, who also heads the San Diego Epigenome Center, one of four centers established by the National Institutes of Health to focus on epigenetics research.

"Understanding how these limited imprinted regions control regulation can help us better understand how certain diseases happen," said Ren, a professor of cellular and molecular medicine in the UC San Diego School of Medicine. "That can help us develop better diagnostic tools for detecting genetic abnormalities and perhaps learn how to predict whether something bad will happen."

Using a deep sequencing, high-throughput screening technology developed by Joseph Ecker at the Salk Institute for Biological Studies, Ren and colleagues found parent-of-origin specific DNA methylation imprints at 1,952 dinucleotide sequences in the mouse genome. The imprinted sequences formed 55 discrete clusters that included virtually all of the known germline differentially methylated regions and 23 previously unknown regions.

"That suggests it's a very accurate tool," said Wei Xie, first author of the paper and a postdoctoral researcher in Ren's laboratory.

The researchers also found a unique type of methylation in the brain that was previously only seen in embryonic cells. "At this point we do not know what the significance of this modification is in the brain, but it is very specific, suggesting that it correlates to an important biological function" said Cathy L. Barr, PhD, a senior scientist at the Toronto Western Research Institute, the Hospital for Sick Children and co-author of the paper.

Explore further: Cell fusion 'eats up' the 'attractive cell' in flowering plants

Related Stories

Epigenetic signals differ across alleles

Feb 12, 2010

Researchers from the Institute of Psychiatry (IoP), King's College London, have identified numerous novel regions of the genome where the chemical modifications involved in controlling gene expression are influenced by either ...

Recommended for you

Micro fingers for arranging single cells

11 hours ago

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Detailed structure of human ribosome revealed

12 hours ago

A team at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC - CNRS/Université de Strasbourg/Inserm) has evidenced, at the atomic scale, the three-dimensional structure of the complete ...

How to kill a protein

13 hours ago

For decades scientists have been looking closely at how our cells make proteins. But the inverse is equally important: how cells kill them.

How RNA machinery navigates our genomic obstacle course

13 hours ago

Once upon a time, scientists thought RNA polymerase—the molecule that kicks off protein synthesis by transcribing DNA into RNA—worked like a wind-up toy: Set it down at a start site in our DNA and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.