Two new records: The world's strongest and purest neutron beam

Feb 13, 2012
Prompt Gamma Activation Analysis is a method which is so extremely accurate, that it is even possible to determine which mine delivered the ore used for a given antique coin. To analyze even smallest samples the scientists at the research neutron source at the Technische Universitaet Muenchen have improved their instrument during last year's maintenance break. Now they have achieved not only the world's strongest neutron beam but also the best ratio between usable neutrons and noisy background radiation worldwide. Credit: Photo: Andreas Heddergott / TU Muenchen

The world's strongest neutron beam is produced by a scientific instrument at the research neutron source FRM II (Forschungs-Neutronenquelle Heinz Maier-Leibnitz) at the Technischen Universitaet Muenchen (TUM). But that is not all: During the long maintenance break in 2011, the instrument PGAA (Prompt Gamma Activation Analysis) was improved to give it the best ratio between usable neutrons and noisy background radiation worldwide. It is now possible to determine the elementary composition of even smallest samples in the milligram range. The instrument is operated by the Universities of Cologne (Germany) and Bern (Switzerland).

Neutrons of the PGAA instrument activate the atoms of samples for which the precise composition is to be determined. The methodology is so extremely accurate that it is even possible to determine which mine delivered the ore used in a given antique coin. The PGAA generates up to 60 billion per square millimeter per second. That is an absolute world record among the of all research neutron sources. Other instruments produce only around half as many neutrons. "We require this high flux for small samples, for example," explains Dr. Petra Kudejova, the responsible researcher at the PGAA. "These are samples of around one milligram."

This is a Winterly impression of the research neutron source FRM II at the Technische Universitaet Muenchen. Here the instrument PGAA produces not only the world’s strongest neutron beam but also delivers the best ratio between usable neutrons and noisy background radiation worldwide. Credit: Photo: Andreas Heddergott / TU Muenchen

"We already had the highest neutrons flux, but also high levels of . That refers to radiation which derives not directly from the sample, but rather from scattered neutrons, which interfere with the measurements," adds Dr. Zsolt Revay, also a researcher at the PGAA. "A low level of background radiation is a prerequisite for examining small samples that react only very weakly to neutrons." Revay and his team used the long maintenance break at the FRM II in 2011 to improve and reconfigure the shielding of the instrument in such a way that the distracting background radiation is reduced to merely one tenth of its prior value.

The PGAA instrument is used primarily in the analysis of the elementary composition of objects. The measurement device can detect a single atom among one million other atoms. This made it possible, for example, to detect tiniest traces of harmful substances captured by an air filter. A magnetic meteorite sample weighing less than one milligram was also analyzed. The results of the analysis helped classify the meteorite. In this way, a theory making a meteorite impact in North America around 13,000 years ago responsible for the extinction of the mammoths could be verified.

Explore further: Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser

Provided by Technische Universitaet Muenchen

5 /5 (2 votes)

Related Stories

Neutrons, the Spies of the Nanoworld

Nov 24, 2005

A new kind of neutron/X-ray reflectometer called "N-REX +" has been inaugurated by the Max Planck Institute for Metals Research in Stuttgart and the Technical University of Munich today at the research neutron ...

MESSENGER Goes to Mercury with NIST Calibrated Instrument

Aug 15, 2004

The first spacecraft intended to orbit Mercury was launched on Aug. 3, 2004, carrying an instrument for mapping the composition of the planet's crust that was calibrated with a novel procedure at the National Institute of ...

Turning a nuclear spotlight on illegal weapons material

Oct 27, 2006

Researchers at the National Institute of Standards and Technology (NIST) and Oak Ridge National Laboratory (ORNL) have demonstrated that they can cheaply, quickly and accurately identify even subnanogram amounts of weapon-grade ...

New detector can 'see' single neutrons over broad range

Mar 10, 2008

Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a new optical method that can detect individual neutrons and record them over a range ...

Recommended for you

Timely arrival of Pharao space clock

21 hours ago

ESA has welcomed the arrival of Pharao, an important part of ESA's atomic clock experiment that will be attached to the International Space Station in 2016.

First in-situ images of void collapse in explosives

Jul 25, 2014

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

baudrunner
not rated yet Feb 13, 2012
In this way, a theory making a meteorite impact in North America around 13,000 years ago responsible for the extinction of the mammoths could be verified
...could be but isn't.