New wheat varieties resist global wheat threat

Feb 21, 2012 By John Bakum

(PhysOrg.com) -- Innovative techniques in wheat breeding are necessary to meet the needs of the world's growing population and overcome environmental challenges, said Ravi Singh at the American Association for the Advancement of Science (AAAS) meeting, Feb. 16-20, in Vancouver, Canada.

Singh, Cornell plant breeding and genetics adjunct professor and distinguished wheat breeder at the International Center for Maize and Wheat Improvement in Mexico, said that enhanced breeding techniques such as shuttle breeding are helping create new durable disease-resistant varieties of wheat that will increase yields to better meet global demand.

Speaking as a panelist in the "Emerging Risks in the Global Food System" a session organized by William Fry, Cornell professor of plant pathology, Singh noted that wheat yields need to increase one ton per hectare by 2020 to keep pace with the growing population. Rising global temperatures and new, virulent diseases will decimate yields even further. These pressures are especially felt in developing countries where wheat provides 20 percent of the daily protein intake for the average person, said Singh.

Wheat diseases -- like Ug99, a -- exert particular pressures on wheat in developing countries. Ug99 destroys entire fields of wheat, overcoming the genetic resistance that protects a vast majority of the world's wheat. The fungus spreads via wind currents and accidental human transmission. It has broken out of eastern Africa and is poised at the edge of the breadbaskets of Pakistan and India.

Prompted by Norman Borlaug, Nobel Prize laureate and father of the Green Revolution, the Durable in Wheat project, administered by Cornell's College of Agriculture and Life Sciences and funded by the and the United Kingdom's Department for International Development, was created and mobilizes research to create new that are resistant to Ug99 and provide increased yields. Singh collaborates with scientists in this and other programs around the world -- including Cornell plant breeder and geneticist Mark Sorrells -- to breed new varieties of wheat that meet the threat.

Shuttle breeding, a method initiated by Borlaug, involves identifying and breeding promising varieties of wheat more quickly, Singh explained. The process starts by planting seed in the International Center for Maize and Wheat Improvement's test fields in Obregon, Mexico, and selected materials are then tested 1,000 miles to the southeast, outside Mexico City, at high altitude and high rainfall where the growing season, soils, temperatures, and environmental and disease pressures are different than in Obregon. Because of the two different growing seasons, Singh can test his seeds twice in one calendar year, cutting the breeding time in half.

The selected plants in breeding populations are then grown at screening nurseries in Njoro, Kenya, administered by the Kenya Agricultural Research Institute, for two generations under high Ug99 pressure and then brought back to Mexico. Plants are selected and tested for grain yield performance, tolerance to heat and drought stresses, bread quality and resistance to various diseases in Mexico.

The final products are varieties that are suited to varied environments around the world that offer good yield and strong disease resistance. More than 20 Ug99-resistant varieties have been released or are in advanced trials in eight countries, including India and Pakistan, he said.

"We have made great strides in identifying new varieties that will provide durable resistance to stem rusts and increase yields," said Singh, "but there is still much work to be done because of the importance of and the ever-changing pressures it faces globally."

Explore further: Heaven scent: Finding may help restore fragrance to roses

Related Stories

Scientists: 'Super' wheat to boost food security

Jun 11, 2011

(AP) -- Scientists say they're close to producing new "super varieties" of wheat that will resist a virulent fungus while boosting yields up to 15 percent, potentially easing a deadly threat to the world's food supply.

Scientists gain in struggle against wheat rust

Mar 17, 2009

(AP) -- Researchers are deploying new wheat varieties with an array of resistant genes they hope will baffle and defeat Ug99, a highly dangerous fungus leapfrogging through wheat fields in Africa and Asia.

Dangerous wheat disease jumps Red Sea

Jan 16, 2007

A new form of stem rust, a virulent wheat disease, has jumped from eastern Africa and is now infecting wheat in Yemen in the Arabian Peninsula.

Scientists fight stem rust UG99 before it becomes a threat

Nov 18, 2008

(PhysOrg.com) -- Wheat breeders and plant pathologists at Montana State University are part of a global effort to develop varieties of wheat resistant to a new fungus. UG99, a stem rust strain that was first discovered in ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.