Virtual ghost imaging: New technique enables imaging even through highly adverse conditions

Feb 15, 2012

Ghost imaging (GI), and its even more oddly named cousin virtual ghost imaging (VGI), seem to contradict conventional wisdom by being able to image an object by simply counting photons in a "light bucket." This non-intuitive technique, however, can lead to better images when conditions are less than ideal. In a first-of-its-kind demonstration, a team of researchers from the U.S. Army Research Laboratory in Adelphi, Md., and the University of Maryland in Baltimore, captured reflected photons from a highly specialized laser beam to create a VGI image of a remote target.

In the case of VGI, reflection does not refer to a of an object. Rather it is merely the individual reflected photons of light that are counted with a single-pixel camera known as a light bucket.

"Virtual ghost imaging is an amazing tool," says Ronald Meyers, a quantum physicist with the U.S. Army Research Laboratory, in a paper published in the American Institute of Physics' journal . "Because we are no longer bound by the need to collect spatial information – as is necessary in a typical camera – we can produce an image in some rather adverse and highly obscured conditions."

In normal ghost imaging, harnessing information to make an image is a two-step process. First, you analyze the light source, which could be the sun or a lamp, with a charge-coupled device (CCD) camera. You then use a second detector, a light bucket, to count the reflected photons. By combining the data from the light source with the properties of the collected photons, an image can be created.

The trick to making an image from photons that contain no spatial information lies in physics related to "entanglement," a property of light that Einstein referred to as "spooky action at a distance." Through entanglement, photons (individual packets of light) can share a certain degree of information. This property is already being developed for specialized communications and computers.

Virtual ghost imaging is a more self-contained and robust application of this phenomenon. For example, in VGI, one light source was a laser that produced an incredibly coherent beam of light known as a Bessel beam. Bessel beams, unlike normal laser beams, produce concentric-circle patterns. If a portion of the beam is blocked or obscured along its trajectory, the original pattern eventually reforms. "Bessel beams are self-healing and provide an important tool in virtual ghost imaging," said Meyers. "Even after passing through distortions or a mask, the same well-defined ring shapes reemerge." So long as enough make it to the target and back to the single-photon detector, it's possible to construct an image.

In their proof-of-concept demonstration, the researchers compared a Bessel beam's VGI imaging capabilities with that of a normal "Gaussian" . Their target was the letters "ARL." The light was then reflected back to the single pixel bucket detector. The researchers conducted this same test several times, placing different objects or an obscuring medium in the paths of the two light beams. In each case – whether passing through an offset aperture, cloudy water, or heat distortion – the Bessel beam reformed to produce a recognizable VGI image. The Gaussian beam produced a much less faithful image, and, in the case of the offset aperture, produced virtually no image at all.

"What this demonstrates is that by combining virtual ghost imaging with a highly diffraction-free coherent like a Bessel beam, it's possible to probe through conditions that would normally thwart other imaging technologies," Meyers says.

According to the researchers, potential spin-offs of ghost imaging and virtual ghost imaging include applications in Intelligence-Surveillance-Reconnaissance (ISR), medical imaging, and quantum computing.

Explore further: And so they beat on, flagella against the cantilever

More information: "Virtual Ghost Imaging through Turbulence and Obscurants using Bessel Beam Illumination" is published in Applied Physics Letters.

Related Stories

Single molecule can shift the phase of a laser beam

Sep 06, 2011

(PhysOrg.com) -- The ability to control light forms the basis of many technologies, from microscopy to optical computing. Now, a team of scientists from ETH in Zurich, Switzerland, has demonstrated that a ...

Switching light on and off - with photons

Nov 09, 2011

(PhysOrg.com) -- Cornell researchers have demonstrated that the passage of a light beam through an optical fiber can be controlled by just a few photons of another light beam.

Scientists make quantum breakthrough

Apr 20, 2011

(PhysOrg.com) -- Scientists have demonstrated for the first time that atoms can be guided in a laser beam and possess the same properties as light guided in an optical communications fiber.

Recommended for you

And so they beat on, flagella against the cantilever

Sep 16, 2014

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

Sep 16, 2014

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

Sep 16, 2014

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

kochevnik
not rated yet Feb 15, 2012
I understand a bit about Bessel functions but I don't see where entanglement enters into the imaging task.